LESSON PLAN

Name of faculty: -Discipline:-Mr. Hitesh Aggarwal Mechanical Engineering

3rd Semester:-

Subject: -Strength of Material

Lesson plan duration: - From 07/09/2020 onwards

WEEK	LECTURE DAY	THEORY	PRACTICAL
		Topic (Including Assignment/test)	Торіс
1 st week	1 st day	Unit 1: Stresses and Strains	1.Tensile test of mild steel bar
	_	Basics concept of load, stress and strain	
	2 nd day	Tensile, compressive, shear stress	
	3 rd day	Linear, lateral, shear, volumetric strain Concept of elasticity, elasticlimit, limitof proportionality	
2 nd week	1 st day	Hooks law, elastic constant, nominal strain	2.Tensile test of aluminum bar
	2 nd day	stress strain curve for ductile and brittle material	
	3 rd day	Yieldpoint,plasticstage,ultimateand breaking stress Percentage elongation, proof and working stress	
3 rd week	1 st day	Factor of safety, poison's ratio, thermal stress and strain, introduction to principal stresses	Revision of practical no 1
	2 nd day	Longitudinal and circumferential stresses Inseamlessthin walled cylindrical shells	
	3 rd day	Unit2: Resilience strain energy, resilience, proof resilience and modulus of resilience	
4 th week	1 st day	Strain energy due to direct stress and shear stress	Revision of practical 2
	2 nd day	Stress due to gradual,sudden andfalling load	
	3 rd day	Unit3: Moment of Inertia conceptof moment of inertia	

5 th week	1 st day	Theorem of perpendicular and parallel axis	3. Bending tests on a steel bar
	2 nd day	Second moment of area of rectangle ,triangle, circle and numerical of these	
	3 rd day	Second moment of area for L,T,I and numerical Section modulus	
6 th week	1 st day	Numerical problems and revision	4. Bending tests on wooden bar
	2 nd day	Unit4: Bending Moment and Shearing Fours Concept of various types of beams and loading	
	3 rd day	Concept of end supports,hingedand fixed, Concept of bending moment and shear force	
7 th week	1 st day	B.M and S.F diagram for cantilever beam	5. Impact test on IZOD test
	2 nd day	B.M.andS.F diagram for simply supported beam	
	3 rd day	B.Mand S.F diagram of cantilever and simply supported beams with or without overhang and U.D.L	
8 th week	1 st day	Numerical problems	6.Impact test on CHARPY test
	2 nd day	Unit5: Bending Stresses	
		concepts of bending stresses	
	3 rd day	Theory of simple bending , Derivation of bending equation	
9 th week	1 st day	Concept of moment of resistance	7. Torsion test of solid specimen of circular section of different metals for
	2 nd day	Bending stress diagram,section modulus <i>for rectangles</i>	determining modulus of rigidity

	3 rd day	Section modulus for circular and symmetrical section, Bendingstressin beams of rectangular	
10 th week	1 st day	BendingstressincircularandT section	Revision of practical 7
	2 nd day	Numerical and revision	
-	3 rd day	Unit6: Columns	
		Concept of column, modes of failure, Types of columns, modes of failure of column	
11 th week	1 st day	Buckling load, crushing load, slenderness ratio	8.To plot a graph between load and extension and to determine the stiffness of a
_	2 nd day	Effective length, end restraints	helical spring
	3 rd day	Factor effecting strength of a column, Strength of column by Euler formula without derivation	
12 th week	1 st day	Rankin gourdan formula	Revision of practical 8
-	2 nd day	Unit7: Torsion	
		concept of torsion, difference between torque and torsion	
	3 rd day	Derivation of torsion equation, Use of torsion equation for circular shaft (solid and hollow)	
13 th week	1 st day	Comparison of solid and hollow shaft	9.hardnessteston different material
	2 nd day	Power transmitted by shaft	
_	3 rd day	Conceptof mean and maximum torque	
14 th week	1 st day	Unit8: Springs Closed coil helical springs subjected to <i>axial load</i>	Revision of practical 9
	2 nd day	Calculation of stress deformation	
	3 rd day	Stiffness, angle of twist, strain energy	

15 th week	1 st day	Numerical problems	Revision of practical 9 on another metal
	2 nd day	Determination of number of plates of laminated springs	
	3 rd day	Revision Discuss on problems	
16 th week	1 st day 2 nd day —	Numerical problems	Viva question
	3 rd day	Numerical problems	
	-	Numerical problems	
17 th week	1 st day	Revision	Viva question
	2 nd day	Revision	
	3 rd day	Revision	