LESSON PLAN				
Name of Faculty	: SH HITESH AGGARWAL			
Discipline	: Mechanical Engineering			
Semester	: 3 rd Semester			
Subject	: THERMODYNAMICS - I			
Lesson Plan Duration:	: 15 Weeks			
Work Load (Lecture/Practical)	: 3Hrs. Lecture & 3 Practical			

Week	Day	Topic(Including Assignment/Test)	Practical
	1	Fundamental Concepts Thermodynamic state and system, boundary, surrounding, universe, thermodynamic systems – closed, open, isolated, adiabatic, homogeneous and heterogeneous, macroscopic and microscopic	Determination of
1	2	properties of system – intensive and extensive, thermodynamic equilibrium, quasi – static process, reversible and irreversible processes	temperature by thermocouple
	3	Zeroth law of thermodynamics	
2	4	definition of properties like pressure, volume, temperature, enthalpy and internal energy	
	5	Laws of Perfect Gases Definition of gases, explanation of perfect gas laws – Boyle's law, Charle's law, Avagadro's law, Regnault's law	Determination of temperature by pyrometer
	6	Universal gas constant, Characteristic gas constants and its derivation.	
	7	Specific heat at constant pressure, specific heat at constant volume of a gas, derivation of an expression for specific heats with characteristics	
3	8	simple numerical problems on gas equation	Determination of temperature by Infrared thermometer

I		Thermodynamic Processes Types of	1
		thermodynamic processes	
	9	Thermodynamic processes	
		isophoria isobaria isothormal	
	40	isochoric, isobaric, isothermal	
	10		
		adiahatia isantusuis malutusuis	 Demonstration
,	4.4	adiabatic, isentropic, polytropic	of mountings
4	11		and accessories
		throttling processes, equations representing the	of a boiler.
	40	throttling processes, equations representing the processes	
	12	p10003303	
		Devivation of work damp, sharped in internal	
		Derivation of work done, change in internal energy, change in entropy, rate of heat transfer	
	13	for the above process.	
		·	Study the
		1 st Class test	working
5	14	1 Glass test	of Lancashire
	14		boiler and
		1 st sessional test	Nestler boiler.
	15	1 Sessional test	
		Laws of Thermodynamics Laws of conservation	
	40	of energy, first law of thermodynamics (Joule's	
	16	experiment) and its limitations	
		Application of first law of thermodynamics to	Study of working
6	17	Non- flow systems – Constant volume, Constant	of high pressure
		pressure, Adiabatic and polytropic processes	boiler
		Steady flow energy equation, Application of	
		steady flow energy equation, Application of steady flow energy equation for turbines, pump,	
	18	boilers, compressors, nozzles, and evaporators.	
		Ì	
		Heat source and sink, statements of second	
		laws of thermodynamics: Kelvin Planck's	
	19	statement, Classius statement, equivalency of	
		statements	
		Perpetual motion Machine of first kind, second	Study of boilers
7	20	kind	(Through industrial visit)
			muusinai visit)
•	L		

Ī		Carnot engine,]
	21	Carriet Origine,	
	22	Introduction of third law of thermodynamics	
8	23	concept of irreversibility and concept of entropy.	Study of boilers (Through industrial visit)
	24	Concept of ideal gas, enthalpy and specific heat capacities of an ideal gas, P – V – T surface of an ideal gas	
	25	triple point, real gases, Vander-Wall's equation	
9	26	Formation of steam and related terms, thermodynamic properties of steam, steam tables	Study of boilers (Through industrial visit)
	27	sensible heat, latent heat, internal energy of steam, entropy of water, entropy of steam, T- S diagrams, Mollier diagram (H – S Chart)	
	28	Expansion of steam, Hyperbolic, reversible adiabatic and throttling processes, determination of quality of steam (dryness fraction)	
10	29	2 nd class test	VIVA
	30	2 nd sessional test	
11	31	Uses of steam, classification of boilers, function of various boiler mounting and accessories	
	32	comparison of fire tube and water tube boilers	Determination of Dryness fraction of steam using calorimeter.
	33	Construction and working of Lancashire boiler, Nestler boiler, Babcock & Wilcox Boiler	

		Introduction to modern boilers.	
	34	introduction to modern policis.	
12	35	Meaning of air standard cycle – its use, condition of reversibility of a cycle	Determination of Dryness fraction of steam using calorimeter.
13	36	Description of Carnot cycle, Otto cycle	
	37	Diesel cycle, simple problems on efficiency for different cycles.	
	38	Comparison of Otto, Diesel cycles for same compression ratio, same peak pressure developed and same heat input	Demonstrate the working of air compressor.
14	39	Reasons for highest efficiency of Carnot cycle and all other cycles working between same temperature limits	
	40	Functions of air compressor – uses of compressed air, type of air compressors	
	41	Single stage reciprocating air compressor, its construction and working, representation of processes involved on P – V diagram, calculation of work done	Demonstrate the working of air
	42	Multistage compressors – advantages over single stage compressors, use of air cooler, condition of minimum work in two stage compressor (without proof) simple problems Multistage compressors	- compressor.
15	43	3 rd class test	
	44	Rotary compressors – types, working and construction of centrifugal compressor, axial flow compressor, vane type compressor	VIVA
	45	3 rd sessional test	