LESSON PLAN

NAME OF THE FACULTY: - Suman Chaudhary

DISCIPLINE: - CSE SEMESTER:- 3rd SUBJECT-DE

Lesson Plan Duration: - 16 weeks (from September 07 to December 24)
Work Load (Lecture/Practical) per week (In hours): Lecture - 03, Practical - 03

Week		Theory		Practical	
	Lecture Day	Topic (Including assignment/test)	Practical	Topic	
1 st	1st	Introduction to Digital electronics	1st	Verification and interpretation of truth tables for AND, OR, NOT NAND, NOR and Exclusive OR (EXOR) and Exclusive NOR(EXNOR) gates	
	2nd	Distinction between analog and digital signal.			
	3rd	Applications and advantages of digital signals.			
2 nd	1st	Introduction to Binary, octal and hexadecimal number system:	2nd	Realisation of logic functions with the help of	
	2nd	conversion from decimal and hexadecimal to binary and viceversa		NAND or NOR gates	
	3rd	Binary addition and subtraction including binary points.			
3 rd	1st	1's and 2's complement method of addition/subtraction.	3 rd	- To design a half add using XOR ar NAND gates ar	
	2nd	Assignment and Revision		verification of	
	3rd	Concept of code, weighted and non-weighted codes,	- Construction full adder using XOR	NAND gates and verify	
4 th	1st	examples of 8421, BCD, excess-3 and Gray code.	Internal	viva for the conducted 3 practical's	
	2nd	Concept of parity, single and double parity and error detection			
	3rd	Assignment and revision			

5 th	1st	a) Concept of negative and positive logic	4th	Verification of truth table for positive edge
	2nd	Definition, symbols and truth tables of NOT, AND, OR, NAND, NOR gate		triggered, negative edge triggered, level triggered IC flip-flops (At least
	3rd	Definition, symbols and truth tables of EXOR Gates, NAND and NOR as universal gates		one IC each of D latch , D flip-flop, JK flip-flops).
6 th	1st	Introduction to TTL and CMOS logic families	5 th	Verification of truth table for encoder and decoder ICs, Mux and DeMux
	2nd	Postulates of Boolean algebra, De Morgan's Theorems.		
	3rd	Implementation of Boolean (logic) equation with gates		
7 th	1st	Karnaugh map (upto 4 variables) and simple application in developing combinational logic circuits Assignment and revision	6 th	To design a 4 bit SISO, SIPO, PISO, PIPO shift registers using JK/D flip flops and verification of their operation.
	2nd	Half adder and Full adder circuit, design and implementation.		
	3rd	4 bit adder circuit, Four bit decoder circuits for 7 segment display and decoder/driver ICs.		
8 th	1st	Basic functions and block diagram of MUX and DEMUX with different ICs	Internal	viva for the conducted 6 practical's
	2nd	Basic functions and block diagram of Encoder		
	3rd	Concept and types of latch with their working and applications		
9 th	1st	Operation using waveforms and truth tables of RS, flip flops.	7th	To design a 4 bit ring counter and verify its operation
	2nd	Operation using waveforms and truth tables of T, D flip flop		
	3rd			

		Operation using waveforms and truth tables of Master/Slave JK		
4.0th	1st	Introduction on latch and flip	8.	Use of
10 th	150	flop	0.	
	2nd	Difference between a latch and		Asynchronous
		a flip flop		Counter ICs (7490
				or 7493)
	3rd	Assignment and Revision		
11 th	1st	Introduction to Asynchronous		
	2	and Synchronous counters	Internal v	iva for the conducted all
	2nd 3rd	Introduction of Binary counters Divide by N ripple counters,		practical's
	310	Divide by N ripple counters,		
12 th	1st	Decade counter, Ring counter		
	2nd	Introduction and basic concepts including shift left and shift right.		Revision
	3rd	Serial in parallel out, serial in		
		serial out, parallel in serial out,		
		parallel in parallel out.		
13 th	1st	Universal shift register		
	2nd	Working principle of A/D and		
		D/A converters		
	3rd	Brief idea about different		
		techniques of A/D conversion		
		and study of :		
		Stair step Ramp A/D converter		
14 th	1st	Dual Slope A/D converter		
	2nd	Successive Approximation A/D		
		Converter		
		Detail study of :		
		Binary Weighted D/A converter		
	3rd	R/2R ladder D/A converter		
		- Applications of A/D		
		and D/A converter.		
15 th	1st	Memory organization,		
13		classification of semiconductor		
		memories (RAM, ROM, PROM,		
		EPROM, EEPROM),		
	2nd	static and dynamic RAM,		
		introduction to		
		74181 ALU IC L		
	3rd	Assignment and Revision		
Week 16	1 st	Revision		

2 nd	Revision
3 rd	Revision