LESSON PLAN

NAME OF THE FACULTY	:	MR. KULDEEP
DISIPLINE	:	ARCHITECTURAL ASSISTANTSHIP
SEMESTER	:	4 th
SUBJECT	:	STRUCTURE MECHANICS
LESSION PLAN DURATION	:	15 WEEKS
WORK LOAD PER WEEK	:	05

		Theory	
Week	Lecture	Торіс	
	Day		
1 ST	1	Introduction of Structure mechanics.	
	2	Force system and Equilibrium	
	3	Force: Definitionand its effect, characteristics.	
	4	Force: Definition and its representation.	
	5	Force: Definition and its types of forces	
2 ND	6	Force Systems: Coplanar force systems	
	7	Force Systems: Non coplanar force systems	
	8	Types of coplanar Forces: Collinear, Concurrent	
	9	Types of coplanar Forces: Parallel, Non concurrent	
	10	Types of coplanar Forces: Non concurrent and Non parallel.	
3 RD	11	Resultant force	
	12	Resultant force and components of a force	
	13	Laws of forces: Parallelogram	
	14	Laws of forces: Triangle and polygon Laws of forces	
	15	Laws of forces: polygon Laws of forces	
4 TH	16	Free Body Diagram	
	17	Lamis theorem	
	18	Calculation of resultant of coplanar force systems	
	19	Concept of Moment, Characteristics of moment.	
	20	Resultant moment, Varignon's theorem	

5 TH	21	Concept of couple, moment of a couple	
	22	Equilibrium of rigid bodies	
	23	Centroid and Moment of Inertia	
	24	Definition of centre of Gravity and Centroid	
	25	SESSIONAL TEST - 1	
	26	Centroid by method of moments of areas for square, rectangular,	
	20	triangular cross- sections	
6 ^{тн} 7 ^{тн}	27	Centroid by method of moments of areas for L-shape, T-shape and I	
	•••	shape cross- sections	
	28	Moments of Inertia by methods of moments and Radius of Gyration	
	29	Parallel axis theorem	
	30	Perpendicular Axis Theorem (no derivation)	
	31	Numerical on moment of merita of Rectangular, Thangular and Circular	
	32	Stress and Strain	
	33	Elasticity, Elastic limit	
	34	Definition of stress and strain	
	35	Types of stress and strain	
8 TH	36	Stress strain curve for mild steel	
	37	Hook's Law (Numerical)	
	38	Shear Force and Bending Moment	
	39	Types of loads- Dead load, Live load, snow, wind and seismic loads	
	40	Types of loads- Wind and seismic loads	
9 TH	41	Types of loading: Point load, Uniformly distributed load	
	42	Types of loading: uniformly varying load.	
	43	Types of Beams: Simply supported, cantilever	
	44	Types of Beams: Overhanging and continuous beams	
	45	Types of Supports: Hinged, fixed supports.	
	46	Types of Supports: types of reactions provided by each type of support.	
	47	Types of Beams: Simply supported, cantilever beams	
10 TH	48	Types of Beams: overhanging and continuous beams	
	49	Types of Beams: Simply supported, cantilever, overhanging and	
		continuous beams	
711	50	SESSIONAL TEST - 2	
11 ¹¹	51	Concept of bending moment	

	52	Concept of shear force				
	53	Bending moment and shear force diagrams for simply supported subjected to point loads				
	54 Bending moment and shear force diagrams for cantileve point loads					
	55	Bending moment and shear force diagrams over hanging beams subjected to point loads				
12 TH	56	Bending moment and shear force diagrams for simply supported subjected to uniformly distributed loads				
	57	Bending moment and shear force diagrams for cantilever subjected to uniformly distributed loads				
	58	Bending moment and shear force diagrams for overhanging beams subjected to uniformly distributed loads only				
	59	Calculation of location and magnitude of Max Bending moment and point of contraflexure				
	60	Calculation of location and magnitude of Max Bending moment				
13 TH	61	Calculation of point of contraflexure				
	62	Bending stresses in Beams				
	63	Introduction: Tension, compression				
	64	Simple Bending and assumption of Simple Bending Theory.				
	65	Position of Neutral Axis				
14 TH	66	Section Modulus.				
	67	Moment of Resistance.				
	68	Application of flexure equation $(M/I = f/y = E/R)$				
	69	Maximum and permissible bending stresses				
	70	Analysis of Perfect Frames				
	71	Types of pin jointed frames.				
	72	Assumptions in computing the forces in members of a perfect frame.				
15 TH	73	Analysis of perfect frames by method of joints.				
	74	Analysis of perfect frames by method of joints.				
	75	SESSIONAL TEST - 3				