
CONCEPT OF MEMORY ORGANIZATION 

The memory unit is an essential component in any digital computer since it is needed for 

storing programs and Data. A very small computer with a limited application may be able to 

fulfill its intended task without the need of additional storage capacity. Most general-purpose 

computers would run more efficiently if they were equipped with additional storage beyond 

the capacity of the main memory. There is just not enough space in one memory unit to 

accommodate all the programs used in a typical computer. Moreover, most computer users 

accumulate and continue to accumulate large amounts of data-processing software. Not all 

accumulated information is needed by the processor at the same time. Therefore, it is more 

economical to use low-cost storage devices to serve as a backup for storing the information 

that is not currently used by the CPU. The memory unit that communicates directly with the 

CPU is called the main memory. Devices that provide backup storage are called auxiliary 

memory. The most common auxiliary memory devices used in computer systems are 

magnetic disks and tapes. They are used for storing system programs, large data files, and 



other backup information. Only programs and data currently needed by the processor reside 

in main memory. All other information is stored in auxiliary Memory and transferred to main 

memory when needed. 

 
 

Memory Hierarchy 
 

Memory is categorized into volatile and nonvolatile memories, with the former requiring 

constant power ON of the system to maintain data storage. Furthermore, a typical computer 

system provides a hierarchy of different times of memories for data storage. 

 
Different levels of the memory hierarchy 

1. Cache (MB): Cache is the fastest accessible memory of a computer system. Its access 

speed is in the order of a few nanoseconds. It is volatile and expensive, so the typical 

cache size is in the order of megabytes. 

2. Main memory (GB): Main memory is arguably the most used memory. When discussing 

computer algorithms such as quick sort, balanced binary sorted trees, or fast Fourier 

transform, one typically assumes that the algorithm operates on data stored in the main 

memory. The main memory is reasonably fast, with access speed around 100 

nanoseconds. It also offers larger capacity at a lower cost. Typical main memory is in the 

order of 10 GB. However, the main memory is volatile. 

3. Secondary storage (TB): Secondary storage refers to nonvolatile data storage units that 

are external to the computer system. Hard drives and solid state drives are examples of 

secondary storage. They offer very large storage capacity in the order of terabytes at very 

low cost. Therefore, database servers typically have an array of secondary storage devices 

with data stored distributed and redundantly across these devices. Despite the continuous 

improvements in access speed of hard drives, secondary storage devices are several 

magnitudes slower than main memory. Modern hard drives have access speed in the order 

of a few milliseconds. 

4. Tertiary storage (PB): Tertiary storage refers storage designed for the purpose data 

backup. Examples of tertiary storage devices are tape drives are robotic driven disk 

arrays. They are capable of peta byte range storage, but have very slow access speed with 

data access latency in seconds or minutes. 



 
 

RAM AND ROM CHIPS 

A RAM chip is better suited for communication with the CPU if it has one or more control 

inputs that select the chip only when needed. Another common feature is a bidirectional data 

bus that allows the transfer of data either from memory to CPU during a read operation or 

from CPU to memory during a write operation. A bidirectional bus can be constructed with 

three-state buffers. A three-state buffer output can be placed in one of three possible states: a 

signal equivalent to logic 1, a signal equivalent to logic 0, or a high-impedance state. The 

logic 1 and 0 are normal digital signals. The high-impedance state behaves like an open 

circuit, which means that the output does not carry a signal and has no logic significance. The 

block diagram of a RAM chip is shown in Fig. The capacity of the memory is 128 words of 

eight bits (one byte) per word. 



 
 

 

This requires a 7-bit Address and an 8-bit bidirectional data bus. The read and write inputs 

specify the memory operation and the two chips select (CS) control inputs are for enabling 

the chip only when it is selected by the microprocessor. The availability of more than one 

control input to select the chip facilitates the decoding of the address lines when multiple 

chips are used in the microcomputer. The read and write inputs are sometimes combined into 

one line labeled R/W. When the chip is selected, the two binary states in this line specify the 

two operations or read or write. 

The function table listed in Fig. (b) Specifies the operation of the RAM chip. The unit is in 

operation only when CSI = 1 and CS2 = 0. The bar on top of the second select variable 

indicates that this input in enabled when it is equal to 0. If the chip select inputs are not 

enabled, or if they are enabled but the read but the read or write inputs are not enabled, the 

memory is inhibited and its data bus is in a high-impedance state. When CS1 = 1 and CS2 = 

0, the memory can be placed in a write or read mode. When the WR input is enabled, the 

memory stores a byte from the data bus into a location specified by the address input lines. 

When the RD input is enabled, the content of the selected byte is placed into the data bus. 

The RD and WR signals control the memory operation as well as the bus buffers associated 

with the bidirectional data bus. 



A ROM chip is organized externally in a similar manner. However, since a ROM can only 

read, the data bus can only be in an output mode. The block diagram of a ROM chip is shown 

in below Fig. For the same-size chip, it is possible to have more bits of ROM occupy less 

space than in RAM. For this reason, the diagram specifies a 512-byte ROM, while the RAM 

has only 128 bytes. The nine address lines in the ROM chip specify any one of the 512 bytes 

stored in it. The two chip select inputs must be CS1 = 1 and CS2 = 0 for the unit to operate. 

Otherwise, the data bus is in a high-impedance state. There is no need for a read or write 

control because the unit can only read. Thus when the chip is enabled by the two select 

inputs, the byte selected by the address lines appears on the data bus. 

MEMORY ADDRESS MAP 

The designer of a computer system must calculate the amount of memory required for the 

particular application and assign it to either RAM or ROM. The interconnection between 

memory and processor is then established form knowledge of the size of memory needed and 

the type of RAM and ROM chips available. The addressing of memory can be established by 

means of a table that specifies the memory address assigned to each chip. The table, called a 

memory address map, is a pictorial representation of assigned address space for each chip in 

the system. 

To demonstrate with a particular example, assume that a computer system needs 512 

bytes of RAM and 512 bytes of ROM. The RAM and ROM chips 

 

 

 

Figure-Typical ROM chip. 

 

To be used are specified in Fig Typical RAM chip and Typical ROM chip. The memory 

address map for this configuration is shown in Table Below. The component column 

specifies whether a RAM or a ROM chip is used. The hexadecimal address column assigns a 

range of hexadecimal equivalent addresses for each chip. The address bus lines are listed in 

the third column. Although there are 16 lines in the address bus, the table shows only 10 lines 



because the other 6 are not used in this example and are assumed to be zero. The small x’s 



under the address bus lines designate those lines that must be connected to the address inputs 

in each chip. The RAM chips have 128 bytes and need seven address lines. The ROM chip 

has 512 bytes and needs 9 address lines. The x’s are always assigned to the low-order bus 

lines: lines 1 through 7 for the RAM and lines 1 through 9 for the ROM. It is now necessary 

to distinguish between four RAM chips by assigning to each a different address. For this 

particular example we choose bus lines 8 and 9 to represent four distinct binary  

combinations. Note that any other pair of unused bus lines can be chosen for this purpose. 

The table clearly shows that the nine low-order bus lines constitute a memory space from 

RAM equal to 512 bytes. The distinction between a RAM and ROM address is done with 

another bus line. Here we choose line 10 for this purpose. When line 10 is 0, the CPU selects 

a RAM, and when this line is equal to 1, it selects the ROM. The equivalent hexadecimal 

address for each chip is obtained forms the information under the address bus assignment. 

 

 

 

 

 

 

 

 

 

 
TABLE-Memory Address Map for Micro pro computer 

 

 
The address bus lines are subdivided into groups of four bits each so That each group can be 

represented with a hexadecimal digit. The first hexadecimal digit represents lines 13 to 16 

and is always 0. The next hexadecimal digit represents lines 9 to 12, but lines 11 and 12 are 

always 0. The range of hexadecimal addresses for each component is determined from the x’s 

associated with it. This x’s represent a binary number that can range from an all-0’s to an all- 

1’s value. 



MEMORY CONNECTION TO CPU 

RAM and ROM chips are connected to a CPU through the data and address buses. The low- 

order lines in the address bus select the byte within the chips and other lines in the address 

bus select a particular chip through its chip select inputs. The connection of memory chips to 

the CPU is shown in below Fig. This configuration gives a memory capacity of 512 bytes of 

RAM and 512 bytes of ROM. It implements the memory map of Table above. Each RAM 

receives the seven low-order bits of the address bus to select one of 128 possible bytes. The 

particular RAM chip selected is determined from lines 8 and 9 in the address bus. This is 

done through a 2 × 4 decoder whose outputs go to the SCI input in each RAM chip. Thus, 

when address lines 8 and 9 are equal to 00, the first RAM chip is selected. When 01, the 

second RAM chip is selected, and so on. The RD and WR outputs from the microprocessor 

are applied to the inputs of each RAM chip. The selection between RAM and ROM is 

achieved through bus line 10. The RAMs are selected when the bit in this line is 0, and the 

ROM when the bit is 1. The other chip select input in the ROM is connected to the RD 

control line for the ROM chip to be enabled only during a read operation. Address bus lines 1 

to 9 are applied to the input address of ROM without going through the decoder. This assigns 

addresses 0 to 511 to RAM and 512 to 1023 to ROM. The data bus of the ROM has only an 

output capability, whereas the data bus connected to the RAMs can transfer information in 

both directions. 

The example just shown gives an indication of the interconnection complexity that can exist 

between memory chips and the CPU. The more chips that are connected, the more external 

decoders are required for selection among the chips. The designer must establish a memory 

map that assigns addresses to the various chips from which the required connections are 

determined. 



 
 

Figure -Memory connection to the CPU. 

 

 

 

 

 

 

Auxiliary memory 

(also referred to as secondary storage) is the non-volatile memory lowest-cost, highest- 

capacity, and slowest-access storage in a computer system. It is where programs and data 

kept for long-term storage or when not in immediate use. 



Auxiliary memory may also refer to as auxiliary storage, secondary storage, secondary 

memory, external storage or external memory. Auxiliary memory is not directly accessible by 

the CPU; instead, it stores noncritical system data like large data files, documents, programs 

and other back up information that supplied to primary memory from auxiliary memory over 

a high-bandwidth channel, which will use whenever necessary. Auxiliary memory holds data 

for future use, and that retains information even the power fails. 

 
A magnetic disk is a storage device that uses a magnetization process to write, rewrite and 

access data. It is covered with a magnetic coating and stores data in the form of tracks, spots 

and sectors. Hard disks, zip disks and floppy disks are common examples of magnetic disks. 

A magnetic disk primarily consists of a rotating magnetic surface and a mechanical arm that 

moves over it. The mechanical arm is used to read from and write to the disk. The data on a 

magnetic disk is read and written using a magnetization process. Data is organized on the 

disk in the form of tracks and sectors, where tracks are the circular divisions of the disk. 

Tracks are further divided into sectors that contain blocks of data. All read and write 

operations on the magnetic disk are performed on the sectors. 

Magnetic tape is one of the oldest technologies for electronic data storage. Tape has largely 

been  displaced  as  a  primary  and backup  storage medium,  but  it  remains   well-suited  

for archiving because of its high capacity, low cost and long durability. It is a linear recording 

system that is not good for random access. If the tape is part of a library, robotic selection and 

loading of the right cartridge into a tape drive adds more latency. In an archive, such latencies 

are not an issue. With tape archiving, there is no online copy for quick retrieval, as everything 

is vaulted for the long term. While tape can't compete with other media in terms of random 

access, there are still industries where magnetic tape storage is the preferred technology: 

 
1. Many motion picture production companies record their shoots to tape after experiencing 

costly failures with both disk and flash. 

2. Scientific experiments that produce mass quantities of data in a few microseconds 

leverage tape's capacity and write speeds. 

3. The oil and gas industry has used tape for years to capture, transport and store valuable 

data. Because oil exploration occurs outside the data center, tape is a good medium for 

transporting data back from the field. 



Tape is often paired with object storage to address the need for lower-latency file access. 

Sometimes, it is entirely replaced by object storage. 

 
How magnetic tape works 

 

 

Data bits -- magnetic states representing on and off -- are recorded to a particulate medium 

bonded to a substrate of Mylar plastic. Improvements in track-following technology  and 

giant magnet resistive read/write heads have increased the number of tracks that can be 

recorded on a tape. 

 

 

 

 

 

CACHE MEMORY 

 

Analysis of a large number of typical programs has shown that the references, to memory at 

any given interval of time tend to be confined within a few localized areas in memory. The 

phenomenon is known as the property of locality of reference. The reason for this property 

may be understood considering that a typical computer program flows in a straight-line 

fashion with program loops and subroutine calls encountered frequently. When a program 

loop is executed, the CPU repeatedly refers to the set of instructions in memory that 

constitute the loop. Every time a given subroutine is called, its set of instructions is fetched 



from memory. Thus loops and subroutines tend to localize the references to memory for 

fetching instructions. To a lesser degree, memory references to data also tend to be localized. 

Table-lookup procedures repeatedly refer to that portion in memory where the table is stored. 

Iterative procedures refer to common memory locations and array of numbers are confined 

within a local portion of memory. The result of all these observations is the locality of 

reference property, which states that over a short interval of time, the addresses generated by 

a typical program refer to a few localized areas of memory repeatedly, while the remainder of 

memory is accessed relatively frequently. If the active portions of the program and data are 

placed in a fast small memory, the average memory access time can be reduced, thus 

reducing the total execution time of the program. Such a fast small memory is referred to as a 

cache memory. It is placed between the CPU and main memory as illustrated in below Fig. 

The cache memory access time is less than the access time of main memory by a factor of 5 

to 10. The cache is the fastest component in the memory hierarchy and approaches the speed 

of CPU components. The fundamental idea of cache organization is that by keeping the most 

frequently accessed instructions and data in the fast cache memory, the average memory 

access time will approach the access time of the cache. Although the cache is only a small 

fraction of the size of main memory, a large fraction of memory requests will be found in the 

fast cache memory because of the locality of reference property of programs. 

The basic operation of the cache is as follows. When the CPU needs to access memory, the 

cache is examined. If the word is found in the cache, it is read from the fast memory. If the 

word addressed by the CPU is not found in the cache, the main memory is accessed to read 

the word. A block of words containing the one just accessed is then transferred from main 

memory to cache memory. The block size may vary from one word (the one just accessed) to 

about 16 words adjacent to the one just accessed. In this manner, some data are transferred to 

cache so that future references to memory find the required words in the fast cache memory. 

The performance of cache memory is frequently measured in terms of a quantity called hit 

ratio. When the CPU refers to memory and finds the word in cache, it is said to produce a hit. 

If the word is not found in cache, it is in main memory and it counts as a miss. The ratio of 

the number of hits divided by the total CPU references to memory (hits plus misses) is the hit 

ratio. The hit ratio is best measured experimentally by running representative programs in the 

computer and measuring the number of hits and misses during a given interval of time. Hit 

ratios of 0.9 and higher have been reported. This high ratio verifies the validity of the locality 

of reference property. 



The average memory access time of a computer system can be improved considerably by use 

of a cache. 

If the hit ratio is high enough so that most of the time the CPU accesses the cache instead of 

main memory, the average access time is closer to the access time of the fast cache memory. 

For example, a computer with cache access time of 100 ns, a main memory access time of 

1000 ns, and a hit ratio of 0.9 produces an average access time of 200 ns. This is a 

considerable improvement over a similar computer without a cache memory, whose access 

time is 1000 ns. The basic characteristic of cache memory is its fast access time. Therefore, 

very little or no time must be wasted when searching for words in the cache. The 

transformation of data from main memory to cache memory is referred to as a mapping 

process. Three types of mapping procedures are of practical interest when considering the 

organization of cache memory: 

1. Associative mapping 

2. Direct mapping 

3. Set-associative mapping 
 

 

 

 

 

 

 

Figure - Example of cache memory 

 

 

 

 
ASSOCIATIVE MEMORY 

 
Many data-processing applications require the search of items in a table stored in memory. 

An assembler program searches the symbol address table in order to extract the symbol’s 

binary equivalent. An account number may be searched in a file to determine the holder’s 

name and account status. The established way to search a table is to store all items where they 

can be addressed in sequence. The search procedure is a strategy for choosing a sequence of 

addresses, reading the content of memory at each address, and comparing the information 



read with the item being searched until a match occurs. The number of accesses to memory 

depends on the location of the item and the efficiency of the search algorithm. Many search 

algorithms have been developed to minimize the number of accesses while searching for an 

item in a random or sequential access memory. The time required to find an item stored in 

memory can be reduced considerably if stored data can be identified for access by the content 

of the data itself rather than by an address. A memory unit accessed by content is called an 

associative memory or content addressable memory (CAM). This type of memory is accessed 

simultaneously and in parallel on the basis of data content rather than by specific address or 

location. When a word is written in an associative memory, no address is given,. The memory 

is capable of finding an empty unused location to store the word. When a word is to be read 

from an associative memory, the content of the word, or part of the word, is specified. The 

memory locaters all words which match the specified content and marks them for reading. 

Because of its organization, the associative memory is uniquely suited to do parallel searches 

by data association. Moreover, searches can be done on an entire word or on a specific field 

within a word. An associative memory is more expensive then a random access memory 

because each cell must have storage capability as well as logic circuits for matching its 

content with an external argument. For this reason, associative memories are used in 

applications where the search time is very critical and must be very short. 

 
HARDWARE ORGANIZATION 

The block diagram of an associative memory is shown in below Fig. It consists of a memory 

array and logic from words with n bits per word. The argument register A and key register K 

each have n bits, one for each bit of a word. The match register M has m bits, one for each 

memory word. Each word in memory is compared in parallel with the content of the 

argument register. The words that match the bits of the argument register set a corresponding 

bit in the match register. After the matching process, those bits in the match register that have 

been set indicate the fact that their corresponding words have been matched. Reading is 

accomplished by a sequential access to memory for those words whose corresponding bits in 

the match register have been set. 

The key register provides a mask for choosing a particular field or key in the argument word. 

The entire argument is compared with each memory word if the key register contains all 1’s. 

Otherwise, only those bits in the argument that have 1’s in their corresponding position of the 



key register are compared. Thus the key provides a mask or identifying piece of information 

which specifies how the reference to memory is made. 

 

 
Figure- Block diagram of associative memory 

 

 

 
 

 

 

 

To illustrate with a numerical example, suppose that the argument register A and the key 

register K have the bit configuration shown below. Only the three leftmost bits of A are 

compared with memory words because K has 1’s in these positions. 

A 101 111100 

K 111 000000 

Word 1 100 111100 no match 

Word 2 101 000001 match 

Word 2 matches the unmasked argument field because the three leftmost bits of the argument 

and the word are equal. The relation between the memory array and external registers in an 

associative memory is shown in below Fig. The cells in the array are marked by the letter C 

with two subscripts. The first subscript gives the word number and the second specifies the 

bit position in the word. Thus cell Cij is the cell for bit j in word i. A bit A j in the argument 

register is compared with all the bits in column j of the array provided that K j = 1. This is 

done for all columns j = 1, 2,…,n. If a match occurs between all the unmasked bits of the 



argument and the bits in word i, the corresponding bit Mi in the match register is set to 1. If 

one or more unmasked bits of the argument and the word do not match, Mi is cleared to 0. 

 

 
Figure -Associative memory of m word, n cells per word 

 

It consists of a flip- Flop storage element Fij and the circuits for reading, writing, and 

matching the cell. The input bit is transferred into the storage cell during a write operation. 

The bit stored is read out during a read operation. The match logic compares the content of 

the storage cell with the corresponding unmasked bit of the argument and provides an output 

for the decision logic that sets the bit in Mi. 

 

 
Memory Management The task of the memory manager and memory management are to 

ensure that all processes are always able to access their memory. To accomplish this task 

requires careful integration between the computer’s hardware and the operating system. 

When several processes with dynamic memory needs run on the computer at the same time, it 

is necessary to reference data with both a logical address and a physical address. The 

hardware is responsible for translating the logical addresses into physical addresses in real 

time. While the operating system is responsible to: 

 

1. ensure that the requested data is in physical memory when needed 

2. Program the hardware to perform the address translations. 



The Paged  Memory  Management scheme   gives   rise   to   the   notion   of demand 

paging using virtual memory. The Virtual Memory Management system maintains a copy of 

the memory for all programs on secondary storage, such as a hard drive. In fact, many pages 

for a process may only reside in virtual memory. Loading only the page frames that are 

needed to run a program can make it faster to load a program. Some memory frames for a 

program may never be needed while the program runs. 

If a current copy of a frame of physical memory is held on disk in virtual memory, then that 

frame may be removed from physical memory to free up needed memory. When a process 

references memory that is not loaded in physical memory, the Memory Management Unit of 

the CPU issues a page fault trap. 

 

http://faculty.salina.k-state.edu/tim/ossg/Memory/paged_mem.html#paged-mem
http://faculty.salina.k-state.edu/tim/ossg/glossary.html#term-demand-paging
http://faculty.salina.k-state.edu/tim/ossg/glossary.html#term-demand-paging
http://faculty.salina.k-state.edu/tim/ossg/glossary.html#term-virtual-memory
http://faculty.salina.k-state.edu/tim/ossg/Memory/mem_hw.html#mmu
http://faculty.salina.k-state.edu/tim/ossg/glossary.html#term-page-fault

