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INTROCTION ABOUT CPU, REGISTERS AND MEMORY, GENERAL REGISTER 

ORGANIZATION 

A central processing unit (CPU) is the electronic circuitry within a computer that carries out 

the instructions of a computer program by performing the basic arithmetic, logical, control 

and input/output (I/O) operations specified by the instructions. 

A register may hold an instruction, a storage address, or any kind of data (such as a bit 

sequence or individual characters). Some instructions specify registers as part of the 

instruction. For example, an instruction may specify that the contents of two defined registers 

be added together and then placed in a specified register. 

Registers are the most important components of CPU. Each register performs a specific 

function. A brief description of most important CPU's registers and their functions are given 

below: 

1. Memory Address Register (MAR): This register holds the address of memory where 

CPU wants to read or write data. When CPU wants to store some data in the memory or reads 

the data from the memory, it places the address of the required memory location in the MAR. 

2. Memory Buffer Register (MBR): This register holds the contents of data or instruction 

read from, or written in memory. The contents of instruction placed in this register are 

transferred to the Instruction Register, while the contents of data are transferred to the 

accumulator or I/O register. In other words you can say that this register is used to store 

data/instruction coming from the memory or going to the memory. 

3. Program Counter (PC): Program Counter register is also known as Instruction Pointer 

Register. This register is used to store the address of the next instruction to be fetched for 

execution. When the instruction is fetched, the value of IP is incremented. Thus this register 

always points or holds the address of next instruction to be fetched. 

4. Instruction Register (IR): Once an instruction is fetched from main memory, it is stored 

in the Instruction Register. The control unit takes instruction from this register, decodes and 

executes it by sending signals to the appropriate component of computer to carry out the task. 



2  

5. Accumulator Register: The accumulator register is located inside the ALU; it is used 

during arithmetic & logical operations of ALU. The control unit stores data values fetched 

from main memory in the accumulator for arithmetic or logical operation. This register holds 

the initial data to be operated upon, the intermediate results, and the final result of operation. 

The final result is transferred to main memory through MBR. 

6. Stack Control Register: A stack represents a set of memory blocks; the data is stored in 

and retrieved from these blocks in an order, i.e. First In and Last Out (FILO). The Stack 

Control Register is used to manage the stacks in memory. The size of this register is 2 or 4 

bytes. 

7. Flag Register: The Flag register is used to indicate occurrence of a certain condition 

during an operation of the CPU. It is a special purpose register with size one byte or two 

bytes. Each bit of the flag register constitutes a flag (or alarm), such that the bit value 

indicates if a specified condition was encountered while executing an instruction. 

For example, if zero value is put into an arithmetic register (accumulator) as a result of an 

arithmetic operation or a comparison, then the zero flag will be raised by the CPU. Thus, the 

subsequent instruction can check this flag and when a zero flag is "ON" it can take an 

appropriate route in the algorithm. 

Memory 

This unit can store instructions, data, and intermediate results. This unit supplies information 

to other units of the computer when needed. It is also known as internal storage unit or the 

main memory or the primary storage or Random Access Memory (RAM). 

Its size affects speed, power, and capability. Primary memory and secondary memory are 

two types of memories in the computer. Functions of the memory unit are − 

1. It stores all the data and the instructions required for processing. 

2. It stores intermediate results of processing. 

3. It stores the final results of processing before these results are released to an output 

device. 

4. All inputs and outputs are transmitted through the main memory. 

 

General Register organization 

 
Generally CPU has seven general registers. Register organization show how registers are 

selected and how data flow between register and ALU. A decoder is used to select a 
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particular register. The output of each register is connected to two multiplexers to form the 

two buses A and B. The selection lines in each multiplexer select the input data for the 

particular bus. 

The A and B buses form the two inputs of an ALU. The operation select lines decide the 

micro operation to be performed by ALU. The result of the micro operation is available at the 

output bus. The output bus connected to the inputs of all registers, thus by selecting a 

destination register it is possible to store the result in it. 

 
A bus organization for seven CPU registers 

 

 
EXAMPLE: 

•  To perform the operation R3 = R1+R2 we have to provide following binary selection variable to the select 

inputs. 

 
1. SEL A: 001 -To place the contents of R1 into bus A. 

2. SEL B: 010 - to place the contents of R2 into bus B 

3. SEL OPR: 10010 – to perform the arithmetic addition A+B 

4. SEL REG or SEL D: 011 – to place the result available on output bus in R3. 

 
 

Register and multiplexer input selection code 
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Binary code 

 

 
SELA 

 

 
SELB 

 

 
SELD or SELREG 

 
000 

 
Input 

 
Input 

 
--- 

 
001 

 
R1 

 
R1 

 
R1 

 
010 

 
R2 

 
R2 

 
R2 

 

011 
 

R3 
 

R3 
 

R3 

 
100 

 
R4 

 
R4 

 
R4 

 

101 
 

R5 
 

R5 
 

R5 

 
110 

 
R6 

 
R6 

 
R6 

 

111 
 

R7 
 

R7 
 

R7 

    

Operation with symbol 
 

Operation selection code Operation symbol 

0000 Transfer A TSFA 

0001 Increment A INC A 

0010 A+B ADD 

0011 A-B SUB 

0100 Decrement A DEC 

0101 A AND B AND 

0110 A OR B OR 

0111 A XOR B XOR 

1000 Complement A COMA 

1001 Shift right A SHR 

1010 Shift left A SHL 
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   What is CONTROL WORD? 
 

 

• The combined value of a binary selection inputs specifies the control word. 

•  It consists of four fields SELA, SELB, and SELD or SELREG contains three bit each and 

SELOPR field contains four bits thus the total bits in the control word are 13-bits. 

 
 

 
SEL A 

 
SELB 

 
SELREG OR SELD 

 
SELOPR 

 

 

FORMATE OF CONTROL WORD 

1. The three bit of SELA select a source registers of the input of the ALU. 

2. The three bits of SELB select a source registers of the b input of the ALU. 

3. The three bits of SELED or SELREG select a destination register using the decoder. 

4. The four bits of SELOPR select the operation to be performed by ALU. 

 

 

 
CONTROL WORD FOR OPERATION R2 = R1+R3 

 

 

SEL A 

 

SEL B 

SEL D OR 

SELREG 

 

SELOPR 

001 011 010 0010 

 
Note: Control words for all micro operation are stored in the control memory 

Example: 

 

 

 
MICROOPERATIO 

N 

 

 

 
SE 

L A 

 

 

 
SE 

L B 

SEL D 

OR 

SELRE 

G 

 

 

 
SELOP 

R 

 

 

 

 
CONTROL WORD 

     00 01 01 001 

R2 = R1+R3 R1 R3 R2 ADD 1 1 0 0 

DAY 3-10 STACK ORGANIZATION, INSTRUCTION FORMAT &ADDRESSING 

MODE 
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STACK ORGANIZATION 
 

 

Stack is a storage structure that stores information in such a way that the last item stored is 

the first item retrieved. It is based on the principle of LIFO (Last-in-first-out). The stack in 

digital computers is a group of memory locations with a register that holds the address of top 

of element. This register that holds the address of top of element of the stack is called Stack 

Pointer. 

 
Stack Operations 

The two operations of a stack are: 

1. Push: Inserts an item on top of stack. 

2. Pop: Deletes an item from top of stack. 

Implementation of Stack 

In digital computers, stack can be implemented in two ways: 

1. Register Stack 

2. Memory Stack 

 
 

Register Stack 

 
 

A stack can be organized as a collection of finite number of registers that are used to store 

temporary information during the execution of a program. The stack pointer (SP) is a register 

that holds the address of top of element of the stack. 

Memory Stack 

 
 

A stack can be implemented in a random access memory (RAM) attached to a CPU. The 

implementation of a stack in the CPU is done by assigning a portion of memory to a stack 

operation and using a processor register as a stack pointer. The starting memory location of 

the stack is specified by the processor register as stack pointer. 

 

 
INSTRUCTION FORMATS 

 
The physical and logical structure of computers is normally described in reference manuals 

provided with the system. Such manuals explain the internal construction of the CPU, 

including the processor registers available and their logical capabilities. They list all 
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hardware-implemented instructions, specify their binary code format, and provide a precise 

definition of each instruction. A computer will usually have a variety of instruction code 

formats. It is the function of the control unit within the CPU to interpret each instruction code 

and provide the necessary control functions needed to process the instruction. 

The format of an instruction is usually depicted in a rectangular box symbolizing the bits of 

the instruction as they appear in memory words or in a control register. The bits of the 

instruction are divided into groups called fields. The most common fields found in instruction 

formats are: 

1. An operation code field that specifies the operation to be performed. 

2. An address field that designates a memory address or a processor registers. 

3. A mode field that specifies the way the operand or the effective address is determined. 

 
 

Computers may have instructions of several different lengths containing varying number of 

addresses. The number of address fields in the instruction format of a computer depends on 

the internal organization of its registers. Most computers fall into one of three types of CPU 

organizations: 

 
1 Single accumulator organization. 

2 General register organization. 

3 Stack organization. 

 
 

THREE-ADDRESS INSTRUCTIONS 

Computers with three-address instruction formats can use each address field to specify either 

a processor register or a memory operand. The program in assembly language that evaluates 

X = (A + B) ∗  (C + D) is shown below, together with comments that explain the register 

transfer operation of each instruction. 

ADD R1, A, B R1 ← M [A] + M [B] 

ADD R2, C, D R2 ← M [C] + M [D] 

MUL X, R1, R2 M [X] ← R1 ∗  R2 

It is assumed that the computer has two processor registers, R1 and R2. The symbol M [A] 

denotes the operand at memory address symbolized by A. 

The advantage of the three-address format is that it results in short programs when  

evaluating arithmetic expressions. The disadvantage is that the binary-coded instructions 
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require too many bits to specify three addresses. An example of a commercial computer that 

uses three-address instructions is the Cyber 170. The instruction formats in the Cyber 

computer are restricted to either three register address fields or two register address fields and 

one memory address field. 

 
TWO-ADDRESS INSTRUCTIONS 

Two address instructions are the most common in commercial computers. Here again each 

address field can specify either a processor register or a memory word. The program to 

evaluate X = (A + B) ∗  (C + D) is as follows: 

MOV R1, A R1 ← M [A] 

ADD R1, B R1 ← R1 + M [B] 

MOV R2, C R2 ← M [C] 

ADD R2, D R2 ← R2 + M [D] 

MUL R1, R2 R1 ← R1∗ R2 

MOV X, R1 M [X] ← R1 

The MOV instruction moves or transfers the operands to and from memory and processor 

registers. The first symbol listed in an instruction is assumed to be both a source and the 

destination where the result of the operation is transferred. 

 
ONE-ADDRESS INSTRUCTIONS 

One-address instructions use an implied accumulator (AC) register for all data manipulation. 

For multiplication and division there is a need for a second register. However, here we will 

neglect the second and assume that the AC contains the result of tall operations. The program 

to evaluate X = (A + B) ∗  (C + D) is 

LOAD A AC ← M [A] 

ADD B AC ← A [C] + M [B] 

STORE T M [T] ← AC 

LOAD C AC ← M [C] 

ADD D AC ← AC + M [D] 

MUL T AC ← AC ∗  M [T] 

STORE X M [X] ← AC 

All operations are done between the AC register and a memory operand. T is the address of a 

temporary memory location required for storing the intermediate result. 
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ZERO-ADDRESS INSTRUCTIONS 

A stack-organized computer does not use an address field for the instructions ADD and 

MUL. The PUSH and POP instructions, however, need an address field to specify the 

operand that communicates with the stack. The following program shows how X = (A + B) ∗  

(C + D) will be written for a stack organized computer. (TOS stands for top of stack) 

PUSH A TOS ← A 

PUSH B TOS ← B 

ADD TOS ← (A + B) 

PUSH C TOS ← C 

PUSH D TOS ← D 

ADD TOS ← (C + D) 

MUL TOS ← (C + D) ∗  (A + B) 

POP X M [X] ← TOS 

To evaluate arithmetic expressions in a stack computer, it is necessary to convert the 

expression into reverse Polish notation. The name “zero-address” is given to this type of 

computer because of the absence of an address field in the computational instructions. 

 
ADDRESSING MODES 

The operation field of an instruction specifies the operation to be performed. This operation 

must be executed on some data stored in computer registers or memory words. The way the 

operands are chosen during program execution in dependent on the addressing mode of the 

instruction. The addressing mode of the instruction. The addressing mode specifies a rule for 

interpreting or modifying the address field of the instruction before the operand is actually 

referenced. 

Although most addressing modes modify the address field of the instruction, there are two 

modes that need no address field at all. These are the implied and immediate modes. 

1 Implied Mode: In this mode the operands are specified implicitly in the definition of the 

instruction. For example, the instruction “complement accumulator” is an implied-mode 

instruction because the operand in the accumulator register is implied in the definition of the 

instruction. In fact, all register reference instructions that use an accumulator are implied- 

mode instructions. Instruction format with mode field Zero-address instructions in a stack- 
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organized computer are implied-mode instructions since the operands are implied to be on  

top of the stack. 

 
2 Immediate Mode: In this mode the operand is specified in the instruction itself. In other 

words, an immediate mode instruction has an operand field rather than an address field. The 

operand field contains the actual operand to be used in conjunction with the operation 

specified in the instruction. Immediate-mode instructions are useful for initializing registers 

to a constant value. It was mentioned that the address field of an instruction may specify 

either a memory word or a processor register. When the address field specifies a processor 

register, the instruction is said to be in the register mode. 

 
3 Register Mode: In this mode the operands are in registers that reside within the CPU. The 

particular register is selected from a register field in the instruction. A k-bit field can specify 

any one of 2k registers. 

 
4 Register Indirect Mode: In this mode the instruction specifies a register in the CPU 

whose contents give the address of the operand in memory. In other words, the selected 

register contains the address of the operand rather than the Op code Mode Address operand 

itself. Before using a register indirect mode instruction, the programmer must ensure that the 

memory address for the operand is placed in the processor register with a previous 

instruction. A reference to the register is then equivalent to specifying a memory address. The 

advantage of a register indirect mode instruction is that the address field of the instruction 

uses fewer bits to select a register than would have been required to specify a memory 

address directly. 

 
5 Auto increment or Auto decrement Mode: This is similar to the register indirect mode 

except that the register is incremented or decremented after (or before) its value is used to 

access memory. When the address stored in the register refers to a table of data in memory, it 

is necessary to increment or decrement the register after every access to the table. This can be 

achieved by using the increment or decrement instruction. However, because it is such a 

common requirement, some computers incorporate a special mode that automatically 

increments or decrements the content of the register after data access. The address field of an 

instruction is used by the control unit in the CPU to obtain the operand from memory. 

Sometimes the value given in the address field is the address of the operand, but sometimes it 
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is just an address from which the address of the operand is calculated. To differentiate among 

the various addressing modes it is necessary to distinguish between the address part of the 

instruction and the effective address used by the control when executing the instruction. The 

effective address is defined to be the memory address obtained from the computation dictated 

by the given addressing mode. The effective address is the address of the operand in a 

computational-type instruction. It is the address where control branches in response to a 

branch-type instruction. 

6 Direct Address Mode: In this mode the effective address is equal to the address part of the 

instruction. The operand resides in memory and its address is given directly by the address 

field of the instruction. In a branch-type instruction the address field specifies the actual 

branch address. 

7 Indirect Address Mode: In this mode the address field of the instruction gives the address 

where the effective address is stored in memory. Control fetches the instruction from memory 

and uses its address part to access memory again to read the effective address. 

 
8 Relative Address Mode: In this mode the content of the program counter is added to the 

address part of the instruction in order to obtain the effective address. The address part of the 

instruction is usually a signed number (in 2’s complement representation) which can be either 

positive or negative. When this number is added to the content of the program counter, the 

result produces an effective address whose position in memory is relative to the address of  

the next instruction. To clarify with an example, assume that the program counter contains 

the number 825 and the address part of the instruction contains the number 24. The 

instruction at location 825 is read from memory during the fetch phase and the program 

counter is then incremented by one to 826 + 24 = 850. This is 24 memory locations forward 

from the address of the next instruction. Relative addressing is often used with branch-type 

instructions when the branch address is in the area surrounding the instruction word itself. It 

results in a shorter address field in the instruction format since the relative address can be 

specified with a smaller number of bits compared to the number of bits required to designate 

the entire memory address. 

 
9 Indexed Addressing Mode: In this mode the content of an index register is added to the 

address part of the instruction to obtain the effective address. The index register is a special 

CPU register that contains an index value. The address field of the instruction defines the 

beginning address of a data array in memory. Each operand in the array is stored in memory 
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relative to the beginning address. The distance between the beginning address and the address 

of the operand is the index value stores in the index register. Any operand in the array can be 

accessed with the same instruction provided that the index register contains the correct index 

value. The index register can be incremented to facilitate access to consecutive operands. 

Note that if an index-type instruction does not include an address field in its format, the 

instruction converts to the register indirect mode of operation. Some computers dedicate one 

CPU register to function solely as an index register. This register is involved implicitly when 

the index-mode instruction is used. In computers with many processor registers, any one of 

the CPU registers can contain the index number. In such a case the register must be specified 

explicitly in a register field within the instruction format. 

 
10 Base Register Addressing Mode: In this mode the content of a base register is added to 

the address part of the instruction to obtain the effective address. This is similar to the 

indexed addressing mode except that the register is now called a base register instead of an 

index register. The difference between the two modes is in the way they are used rather than 

in the way that they are computed. An index register is assumed to hold an index number that 

is relative to the address part of the instruction. A base register is assumed to hold a base 

address and the address field of the instruction gives a displacement relative to this base 

address. The base register addressing mode is used in computers to facilitate the relocation of 

programs in memory. When programs and data are moved from one segment of memory to 

another, as required in multiprogramming systems, the address values of the base register 

requires updating to reflect the beginning of a new memory segment. 
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CONCEPT OF CPU DESIGN, RISC & CISC 

Day 12 to 18 

Hardwired v/s Micro-programmed Control Unit 

To execute an instruction, the control unit of the CPU must generate the required control 

signal in the proper sequence. There are two approaches used for generating the control 

signals in proper sequence as Hardwired Control unit and Micro-programmed control unit. 

Hardwired Control Unit – 

The control hardware can be viewed as a state machine that changes from one state to another 

in every clock cycle, depending on the contents of the instruction register, the condition codes 

and the external inputs. The outputs of the state machine are the control signals. The 

sequence of the operation carried out by this machine is determined by the wiring of the logic 

elements and hence named as “hardwired”. 

 
1.  Fixed logic circuits that correspond directly to the Boolean expressions are used to 

generate the control signals. 

2. Hardwired control is faster than micro-programmed control. 

3. A controller that uses this approach can operate at high speed. 
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Characteristics: 

 
 

1. It uses flags, decoder, logic gates and other digital circuits. 
 

2. As name implies it is a hardware control unit. 

 

3. On the basis of input Signal output is generated. 

 

4. Difficult to design, test and implement. 

 

6. Inflexible to modify. 

 

7. Faster mode of operation. 

 

8. Expensive and high error. 

 

9. Used in RISC processor. 

 
Micro-programmed Control Unit – 

1.  The control signals associated with operations are stored in special memory units 

inaccessible by the programmer as Control Words. 

2. Control signals are generated by a program are similar to machine language programs. 

3.  Micro-programmed control unit is slower in speed because of the time it takes to fetch 

microinstructions from the control memory. 
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Characteristics 

1. It uses sequence of micro-instruction in micro programming language. 

 

2. It is mid-way between Hardware and Software. 

 

3. It generates a set of control signal on the basis of control line. 

 

4. Easy to design, test and implement. 

 

5. Flexible to modify. 

 

6. Slower mode of operation. 

 

7. Cheaper and less error. 

 

8. Used in CISC processor. 

 

Reduced Instruction Set Computer 

 
A reduced instruction set computer (RISC) is a computer that uses a central processing unit 

(CPU) that implements the processor design principle of simplified instructions. To date, 

RISC is the most efficient CPU architecture technology. 
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This architecture is an evolution and alternative to complex instruction set computing (CISC). 

With RISC, the basic concept is to have simple instructions that do less but execute very 

quickly to provide better performance. 

The most basic RISC feature is a processor with a small core logic that allows engineers to 

increase the register set and increase internal parallelism by using the following: 

 

1. Thread level parallelism: Increases the number of parallel threads executed by the 

CPU 

2. Instruction level parallelism: Increases the speed of the CPU's executing instructions 

 
The words "reduced instruction set" are often misinterpreted to refer to a reduced number of 

instructions. However, this is not the case, as several RISC processors, like the PowerPC, 

have numerous instructions. At the opposite end of the spectrum, the DEC PDP-8, a CISC 

CPU, has only eight basic instructions. Reduced instruction actually means that the amount of 

work done by each instruction is reduced in terms of number of cycles - at most only a single 

data memory cycle - compared to CISC CPUs, in which dozens of cycles are required prior to 

completing the entire instruction. This results in faster processing. 

 

CISC 

 
The main intend of the CISC processor architecture is to complete task by using less number 

of assembly lines. For this purpose, the processor is built to execute a series of operations. 

Complex instruction is also termed as MULT, which operates memory banks of a computer 

directly without making the compiler to perform storing and loading functions. 

 
Features of CISC Architecture 

 
1. To simplify the computer architecture, CISC supports microprogramming. 

2. CISC have more number of predefined instructions which makes high level languages easy 

to design and implement. 

3. CISC consists of less number of registers and more number of addressing modes, generally  

5 to 20. 

4. CISC processor takes varying cycle time for execution of instructions – multi-clock cycles. 

5. Because of the complex instruction set of the CISC, the pipelining technique is very 

difficult. 



17  

6. CISC consists of more number of instructions, generally from 100 to 250. 

7. Special instructions are used very rarely. 

8. Operands in memory are manipulated by instructions. 

 
 

Advantages of CISC architecture 

 
1. Each machine language instruction is grouped into a microcode instruction and executed 

accordingly, and then are stored inbuilt in the memory of the main processor, termed as 

microcode implementation. 

2. As the microcode memory is faster than the main memory, the microcode instruction set can 

be implemented without considerable speed reduction over hard wired implementation. 

3. Entire new instruction set can be handled by modifying the micro program design. 

4. CISC, the number of instructions required to implement a program can be reduced by 

building rich instruction sets and can also be made to use slow main memory more 

efficiently. 

5. Because of the superset of instructions that consists of all earlier instructions, this makes 

micro coding easy. 

 
Drawbacks of CISC 

 
1. The amount of clock time taken by different instructions will be different – due to this – the 

performance of the machine slows down. 

2. The instruction set complexity and the chip hardware increases as every new version of the 

processor consists of a subset of earlier generations. 

3. Only 20% of the existing instructions are used in a typical programming event, even though 

there are many specialized instructions in existence which are not even used frequently. 

4. The conditional codes are set by the CISC instructions as a side effect of each instruction 

which takes time for this setting – and, as the subsequent instruction changes the condition 

code bits – so, the compiler has to examine the condition code bits before this happens. 
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Difference between CISC and RISC 

 

Architectural 

Characteristics 

Complex Instruction Set 

Computer(CISC) 

Reduced Instruction Set 

Computer(RISC) 

Instruction size and 

format 

Large set of instructions with variable 

formats (16-64 bits per instruction). 

Small set of instructions with 

fixed format (32 bit). 

Data transfer Memory to memory. Register to register. 

 
CPU control 

Most micro coded using control memory 

(ROM) but modern CISC use hardwired 

control. 

Mostly hardwired without 

control memory. 

Instruction type Not register based instructions. Register based instructions. 

Memory access More memory access. Less memory access. 

Clocks Includes multi-clocks. Includes single clock. 

Instruction nature Instructions are complex. Instructions are simple. 

DAY 21 TO 34 

CONCEPT OF MEMORY ORGANIZATION 

The memory unit is an essential component in any digital computer since it is needed for 

storing programs and Data. A very small computer with a limited application may be able to 

fulfill its intended task without the need of additional storage capacity. Most general-purpose 

computers would run more efficiently if they were equipped with additional storage beyond 

the capacity of the main memory. There is just not enough space in one memory unit to 

accommodate all the programs used in a typical computer. Moreover, most computer users 

accumulate and continue to accumulate large amounts of data-processing software. Not all 

accumulated information is needed by the processor at the same time. Therefore, it is more 

economical to use low-cost storage devices to serve as a backup for storing the information 

that is not currently used by the CPU. The memory unit that communicates directly with the 

CPU is called the main memory. Devices that provide backup storage are called auxiliary 

memory. The most common auxiliary memory devices used in computer systems are 

magnetic disks and tapes. They are used for storing system programs, large data files, and 
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other backup information. Only programs and data currently needed by the processor reside 

in main memory. All other information is stored in auxiliary Memory and transferred to main 

memory when needed. 

 
 

Memory Hierarchy 

 
Memory is categorized into volatile and nonvolatile memories, with the former requiring 

constant power ON of the system to maintain data storage. Furthermore, a typical computer 

system provides a hierarchy of different times of memories for data storage. 

 
Different levels of the memory hierarchy 

1. Cache (MB): Cache is the fastest accessible memory of a computer system. Its access 

speed is in the order of a few nanoseconds. It is volatile and expensive, so the typical 

cache size is in the order of megabytes. 

2. Main memory (GB): Main memory is arguably the most used memory. When discussing 

computer algorithms such as quick sort, balanced binary sorted trees, or fast Fourier 

transform, one typically assumes that the algorithm operates on data stored in the main 

memory. The main memory is reasonably fast, with access speed around 100 

nanoseconds. It also offers larger capacity at a lower cost. Typical main memory is in the 

order of 10 GB. However, the main memory is volatile. 

3. Secondary storage (TB): Secondary storage refers to nonvolatile data storage units that 

are external to the computer system. Hard drives and solid state drives are examples of 

secondary storage. They offer very large storage capacity in the order of terabytes at very 

low cost. Therefore, database servers typically have an array of secondary storage devices 

with data stored distributed and redundantly across these devices. Despite the continuous 

improvements in access speed of hard drives, secondary storage devices are several 

magnitudes slower than main memory. Modern hard drives have access speed in the order 

of a few milliseconds. 

4. Tertiary storage (PB): Tertiary storage refers storage designed for the purpose data 

backup. Examples of tertiary storage devices are tape drives are robotic driven disk 

arrays. They are capable of peta byte range storage, but have very slow access speed with 

data access latency in seconds or minutes. 
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RAM AND ROM CHIPS 

A RAM chip is better suited for communication with the CPU if it has one or more control 

inputs that select the chip only when needed. Another common feature is a bidirectional data 

bus that allows the transfer of data either from memory to CPU during a read operation or 

from CPU to memory during a write operation. A bidirectional bus can be constructed with 

three-state buffers. A three-state buffer output can be placed in one of three possible states: a 

signal equivalent to logic 1, a signal equivalent to logic 0, or a high-impedance state. The 

logic 1 and 0 are normal digital signals. The high-impedance state behaves like an open 

circuit, which means that the output does not carry a signal and has no logic significance. The 

block diagram of a RAM chip is shown in Fig. The capacity of the memory is 128 words of 

eight bits (one byte) per word. 
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This requires a 7-bit Address and an 8-bit bidirectional data bus. The read and write inputs 

specify the memory operation and the two chips select (CS) control inputs are for enabling 

the chip only when it is selected by the microprocessor. The availability of more than one 

control input to select the chip facilitates the decoding of the address lines when multiple 

chips are used in the microcomputer. The read and write inputs are sometimes combined into 

one line labeled R/W. When the chip is selected, the two binary states in this line specify the 

two operations or read or write. 

The function table listed in Fig. (b) Specifies the operation of the RAM chip. The unit is in 

operation only when CSI = 1 and CS2 = 0. The bar on top of the second select variable 

indicates that this input in enabled when it is equal to 0. If the chip select inputs are not 

enabled, or if they are enabled but the read but the read or write inputs are not enabled, the 

memory is inhibited and its data bus is in a high-impedance state. When CS1 = 1 and CS2 = 

0, the memory can be placed in a write or read mode. When the WR input is enabled, the 

memory stores a byte from the data bus into a location specified by the address input lines. 

When the RD input is enabled, the content of the selected byte is placed into the data bus. 

The RD and WR signals control the memory operation as well as the bus buffers associated 

with the bidirectional data bus. 
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A ROM chip is organized externally in a similar manner. However, since a ROM can only 

read, the data bus can only be in an output mode. The block diagram of a ROM chip is shown 

in below Fig. For the same-size chip, it is possible to have more bits of ROM occupy less 

space than in RAM. For this reason, the diagram specifies a 512-byte ROM, while the RAM 

has only 128 bytes. The nine address lines in the ROM chip specify any one of the 512 bytes 

stored in it. The two chip select inputs must be CS1 = 1 and CS2 = 0 for the unit to operate. 

Otherwise, the data bus is in a high-impedance state. There is no need for a read or write 

control because the unit can only read. Thus when the chip is enabled by the two select 

inputs, the byte selected by the address lines appears on the data bus. 

MEMORY ADDRESS MAP 

The designer of a computer system must calculate the amount of memory required for the 

particular application and assign it to either RAM or ROM. The interconnection between 

memory and processor is then established form knowledge of the size of memory needed and 

the type of RAM and ROM chips available. The addressing of memory can be established by 

means of a table that specifies the memory address assigned to each chip. The table, called a 

memory address map, is a pictorial representation of assigned address space for each chip in 

the system. 

To demonstrate with a particular example, assume that a computer system needs 512 

bytes of RAM and 512 bytes of ROM. The RAM and ROM chips 

 

 

 

Figure-Typical ROM chip. 
 

To be used are specified in Fig Typical RAM chip and Typical ROM chip. The memory 

address map for this configuration is shown in Table Below. The component column 

specifies whether a RAM or a ROM chip is used. The hexadecimal address column assigns a 

range of hexadecimal equivalent addresses for each chip. The address bus lines are listed in 

the third column. Although there are 16 lines in the address bus, the table shows only 10 lines 

because the other 6 are not used in this example and are assumed to be zero. The small x’s 
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under the address bus lines designate those lines that must be connected to the address inputs 

in each chip. The RAM chips have 128 bytes and need seven address lines. The ROM chip 

has 512 bytes and needs 9 address lines. The x’s are always assigned to the low-order bus 

lines: lines 1 through 7 for the RAM and lines 1 through 9 for the ROM. It is now necessary 

to distinguish between four RAM chips by assigning to each a different address. For this 

particular example we choose bus lines 8 and 9 to represent four distinct binary  

combinations. Note that any other pair of unused bus lines can be chosen for this purpose. 

The table clearly shows that the nine low-order bus lines constitute a memory space from 

RAM equal to 512 bytes. The distinction between a RAM and ROM address is done with 

another bus line. Here we choose line 10 for this purpose. When line 10 is 0, the CPU selects 

a RAM, and when this line is equal to 1, it selects the ROM. The equivalent hexadecimal 

address for each chip is obtained forms the information under the address bus assignment. 

 

 

 

 

 

 

 

 

 

 
TABLE-Memory Address Map for Micro pro computer 

 

 
The address bus lines are subdivided into groups of four bits each so That each group can be 

represented with a hexadecimal digit. The first hexadecimal digit represents lines 13 to 16 

and is always 0. The next hexadecimal digit represents lines 9 to 12, but lines 11 and 12 are 

always 0. The range of hexadecimal addresses for each component is determined from the x’s 

associated with it. This x’s represent a binary number that can range from an all-0’s to an all- 

1’s value. 
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MEMORY CONNECTION TO CPU 

RAM and ROM chips are connected to a CPU through the data and address buses. The low- 

order lines in the address bus select the byte within the chips and other lines in the address 

bus select a particular chip through its chip select inputs. The connection of memory chips to 

the CPU is shown in below Fig. This configuration gives a memory capacity of 512 bytes of 

RAM and 512 bytes of ROM. It implements the memory map of Table above. Each RAM 

receives the seven low-order bits of the address bus to select one of 128 possible bytes. The 

particular RAM chip selected is determined from lines 8 and 9 in the address bus. This is 

done through a 2 × 4 decoder whose outputs go to the SCI input in each RAM chip. Thus, 

when address lines 8 and 9 are equal to 00, the first RAM chip is selected. When 01, the 

second RAM chip is selected, and so on. The RD and WR outputs from the microprocessor 

are applied to the inputs of each RAM chip. The selection between RAM and ROM is 

achieved through bus line 10. The RAMs are selected when the bit in this line is 0, and the 

ROM when the bit is 1. The other chip select input in the ROM is connected to the RD 

control line for the ROM chip to be enabled only during a read operation. Address bus lines 1 

to 9 are applied to the input address of ROM without going through the decoder. This assigns 

addresses 0 to 511 to RAM and 512 to 1023 to ROM. The data bus of the ROM has only an 

output capability, whereas the data bus connected to the RAMs can transfer information in 

both directions. 

The example just shown gives an indication of the interconnection complexity that can exist 

between memory chips and the CPU. The more chips that are connected, the more external 

decoders are required for selection among the chips. The designer must establish a memory 

map that assigns addresses to the various chips from which the required connections are 

determined. 
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Figure -Memory connection to the CPU. 

 

 

 

 

 

 

Auxiliary memory 

(also referred to as secondary storage) is the non-volatile memory lowest-cost, highest- 

capacity, and slowest-access storage in a computer system. It is where programs and data 

kept for long-term storage or when not in immediate use. 
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Auxiliary memory may also refer to as auxiliary storage, secondary storage, secondary 

memory, external storage or external memory. Auxiliary memory is not directly accessible by 

the CPU; instead, it stores noncritical system data like large data files, documents, programs 

and other back up information that supplied to primary memory from auxiliary memory over 

a high-bandwidth channel, which will use whenever necessary. Auxiliary memory holds data 

for future use, and that retains information even the power fails. 

 
A magnetic disk is a storage device that uses a magnetization process to write, rewrite and 

access data. It is covered with a magnetic coating and stores data in the form of tracks, spots 

and sectors. Hard disks, zip disks and floppy disks are common examples of magnetic disks. 

A magnetic disk primarily consists of a rotating magnetic surface and a mechanical arm that 

moves over it. The mechanical arm is used to read from and write to the disk. The data on a 

magnetic disk is read and written using a magnetization process. Data is organized on the 

disk in the form of tracks and sectors, where tracks are the circular divisions of the disk. 

Tracks are further divided into sectors that contain blocks of data. All read and write 

operations on the magnetic disk are performed on the sectors. 

Magnetic tape is one of the oldest technologies for electronic data storage. Tape has largely 

been  displaced  as  a  primary  and backup  storage medium,  but  it  remains   well-suited  

for archiving because of its high capacity, low cost and long durability. It is a linear recording 

system that is not good for random access. If the tape is part of a library, robotic selection and 

loading of the right cartridge into a tape drive adds more latency. In an archive, such latencies 

are not an issue. With tape archiving, there is no online copy for quick retrieval, as everything 

is vaulted for the long term. While tape can't compete with other media in terms of random 

access, there are still industries where magnetic tape storage is the preferred technology: 

 
1. Many motion picture production companies record their shoots to tape after experiencing 

costly failures with both disk and flash. 

2. Scientific experiments that produce mass quantities of data in a few microseconds 

leverage tape's capacity and write speeds. 

3. The oil and gas industry has used tape for years to capture, transport and store valuable 

data. Because oil exploration occurs outside the data center, tape is a good medium for 

transporting data back from the field. 
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Tape is often paired with object storage to address the need for lower-latency file access. 

Sometimes, it is entirely replaced by object storage. 

 
How magnetic tape works 

 

 

Data bits -- magnetic states representing on and off -- are recorded to a particulate medium 

bonded to a substrate of Mylar plastic. Improvements in track-following technology  and 

giant magnet resistive read/write heads have increased the number of tracks that can be 

recorded on a tape. 

 

 

 

 

 

CACHE MEMORY 

 

Analysis of a large number of typical programs has shown that the references, to memory at 

any given interval of time tend to be confined within a few localized areas in memory. The 

phenomenon is known as the property of locality of reference. The reason for this property 

may be understood considering that a typical computer program flows in a straight-line 

fashion with program loops and subroutine calls encountered frequently. When a program 

loop is executed, the CPU repeatedly refers to the set of instructions in memory that 

constitute the loop. Every time a given subroutine is called, its set of instructions is fetched 
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from memory. Thus loops and subroutines tend to localize the references to memory for 

fetching instructions. To a lesser degree, memory references to data also tend to be localized. 

Table-lookup procedures repeatedly refer to that portion in memory where the table is stored. 

Iterative procedures refer to common memory locations and array of numbers are confined 

within a local portion of memory. The result of all these observations is the locality of 

reference property, which states that over a short interval of time, the addresses generated by 

a typical program refer to a few localized areas of memory repeatedly, while the remainder of 

memory is accessed relatively frequently. If the active portions of the program and data are 

placed in a fast small memory, the average memory access time can be reduced, thus 

reducing the total execution time of the program. Such a fast small memory is referred to as a 

cache memory. It is placed between the CPU and main memory as illustrated in below Fig. 

The cache memory access time is less than the access time of main memory by a factor of 5 

to 10. The cache is the fastest component in the memory hierarchy and approaches the speed 

of CPU components. The fundamental idea of cache organization is that by keeping the most 

frequently accessed instructions and data in the fast cache memory, the average memory 

access time will approach the access time of the cache. Although the cache is only a small 

fraction of the size of main memory, a large fraction of memory requests will be found in the 

fast cache memory because of the locality of reference property of programs. 

The basic operation of the cache is as follows. When the CPU needs to access memory, the 

cache is examined. If the word is found in the cache, it is read from the fast memory. If the 

word addressed by the CPU is not found in the cache, the main memory is accessed to read 

the word. A block of words containing the one just accessed is then transferred from main 

memory to cache memory. The block size may vary from one word (the one just accessed) to 

about 16 words adjacent to the one just accessed. In this manner, some data are transferred to 

cache so that future references to memory find the required words in the fast cache memory. 

The performance of cache memory is frequently measured in terms of a quantity called hit 

ratio. When the CPU refers to memory and finds the word in cache, it is said to produce a hit. 

If the word is not found in cache, it is in main memory and it counts as a miss. The ratio of 

the number of hits divided by the total CPU references to memory (hits plus misses) is the hit 

ratio. The hit ratio is best measured experimentally by running representative programs in the 

computer and measuring the number of hits and misses during a given interval of time. Hit 

ratios of 0.9 and higher have been reported. This high ratio verifies the validity of the locality 

of reference property. 
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The average memory access time of a computer system can be improved considerably by use 

of a cache. 

If the hit ratio is high enough so that most of the time the CPU accesses the cache instead of 

main memory, the average access time is closer to the access time of the fast cache memory. 

For example, a computer with cache access time of 100 ns, a main memory access time of 

1000 ns, and a hit ratio of 0.9 produces an average access time of 200 ns. This is a 

considerable improvement over a similar computer without a cache memory, whose access 

time is 1000 ns. The basic characteristic of cache memory is its fast access time. Therefore, 

very little or no time must be wasted when searching for words in the cache. The 

transformation of data from main memory to cache memory is referred to as a mapping 

process. Three types of mapping procedures are of practical interest when considering the 

organization of cache memory: 

1. Associative mapping 

2. Direct mapping 

3. Set-associative mapping 
 

 

 

 

 

 

 

Figure - Example of cache memory 

 

 

 

 
ASSOCIATIVE MEMORY 

 
Many data-processing applications require the search of items in a table stored in memory. 

An assembler program searches the symbol address table in order to extract the symbol’s 

binary equivalent. An account number may be searched in a file to determine the holder’s 

name and account status. The established way to search a table is to store all items where they 

can be addressed in sequence. The search procedure is a strategy for choosing a sequence of 

addresses, reading the content of memory at each address, and comparing the information 
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read with the item being searched until a match occurs. The number of accesses to memory 

depends on the location of the item and the efficiency of the search algorithm. Many search 

algorithms have been developed to minimize the number of accesses while searching for an 

item in a random or sequential access memory. The time required to find an item stored in 

memory can be reduced considerably if stored data can be identified for access by the content 

of the data itself rather than by an address. A memory unit accessed by content is called an 

associative memory or content addressable memory (CAM). This type of memory is accessed 

simultaneously and in parallel on the basis of data content rather than by specific address or 

location. When a word is written in an associative memory, no address is given,. The memory 

is capable of finding an empty unused location to store the word. When a word is to be read 

from an associative memory, the content of the word, or part of the word, is specified. The 

memory locaters all words which match the specified content and marks them for reading. 

Because of its organization, the associative memory is uniquely suited to do parallel searches 

by data association. Moreover, searches can be done on an entire word or on a specific field 

within a word. An associative memory is more expensive then a random access memory 

because each cell must have storage capability as well as logic circuits for matching its 

content with an external argument. For this reason, associative memories are used in 

applications where the search time is very critical and must be very short. 

 
HARDWARE ORGANIZATION 

The block diagram of an associative memory is shown in below Fig. It consists of a memory 

array and logic from words with n bits per word. The argument register A and key register K 

each have n bits, one for each bit of a word. The match register M has m bits, one for each 

memory word. Each word in memory is compared in parallel with the content of the 

argument register. The words that match the bits of the argument register set a corresponding 

bit in the match register. After the matching process, those bits in the match register that have 

been set indicate the fact that their corresponding words have been matched. Reading is 

accomplished by a sequential access to memory for those words whose corresponding bits in 

the match register have been set. 

The key register provides a mask for choosing a particular field or key in the argument word. 

The entire argument is compared with each memory word if the key register contains all 1’s. 

Otherwise, only those bits in the argument that have 1’s in their corresponding position of the 
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key register are compared. Thus the key provides a mask or identifying piece of information 

which specifies how the reference to memory is made. 

 

 
Figure- Block diagram of associative memory 

 

 

 
 

 

 

 

To illustrate with a numerical example, suppose that the argument register A and the key 

register K have the bit configuration shown below. Only the three leftmost bits of A are 

compared with memory words because K has 1’s in these positions. 

A 101 111100 

K 111 000000 

Word 1 100 111100 no match 

Word 2 101 000001 match 

Word 2 matches the unmasked argument field because the three leftmost bits of the argument 

and the word are equal. The relation between the memory array and external registers in an 

associative memory is shown in below Fig. The cells in the array are marked by the letter C 

with two subscripts. The first subscript gives the word number and the second specifies the 

bit position in the word. Thus cell Cij is the cell for bit j in word i. A bit A j in the argument 

register is compared with all the bits in column j of the array provided that K j = 1. This is 

done for all columns j = 1, 2,…,n. If a match occurs between all the unmasked bits of the 
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argument and the bits in word i, the corresponding bit Mi in the match register is set to 1. If 

one or more unmasked bits of the argument and the word do not match, Mi is cleared to 0. 

 

 
Figure -Associative memory of m word, n cells per word 

 

It consists of a flip- Flop storage element Fij and the circuits for reading, writing, and 

matching the cell. The input bit is transferred into the storage cell during a write operation. 

The bit stored is read out during a read operation. The match logic compares the content of 

the storage cell with the corresponding unmasked bit of the argument and provides an output 

for the decision logic that sets the bit in Mi. 

 

 
Memory Management The task of the memory manager and memory management are to 

ensure that all processes are always able to access their memory. To accomplish this task 

requires careful integration between the computer’s hardware and the operating system. 

When several processes with dynamic memory needs run on the computer at the same time, it 

is necessary to reference data with both a logical address and a physical address. The 

hardware is responsible for translating the logical addresses into physical addresses in real 

time. While the operating system is responsible to: 

 

1. ensure that the requested data is in physical memory when needed 

2. Program the hardware to perform the address translations. 
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The Paged  Memory  Management scheme   gives   rise   to   the   notion   of demand 

paging using virtual memory. The Virtual Memory Management system maintains a copy of 

the memory for all programs on secondary storage, such as a hard drive. In fact, many pages 

for a process may only reside in virtual memory. Loading only the page frames that are 

needed to run a program can make it faster to load a program. Some memory frames for a 

program may never be needed while the program runs. 

If a current copy of a frame of physical memory is held on disk in virtual memory, then that 

frame may be removed from physical memory to free up needed memory. When a process 

references memory that is not loaded in physical memory, the Memory Management Unit of 

the CPU issues a page fault trap. 

http://faculty.salina.k-state.edu/tim/ossg/Memory/paged_mem.html#paged-mem
http://faculty.salina.k-state.edu/tim/ossg/glossary.html#term-demand-paging
http://faculty.salina.k-state.edu/tim/ossg/glossary.html#term-demand-paging
http://faculty.salina.k-state.edu/tim/ossg/glossary.html#term-virtual-memory
http://faculty.salina.k-state.edu/tim/ossg/Memory/mem_hw.html#mmu
http://faculty.salina.k-state.edu/tim/ossg/glossary.html#term-page-fault

