
Computer Programming using Python: by Ravinder Sheoran

1

Python – Introduction

Python is a high-level, interpreted, interactive and object-oriented scripting

language. Python is designed to be highly readable. It uses English

keywords frequently where as other languages use punctuation, and it has

fewer syntactical constructions than other languages.

• Python is Interpreted − Python is processed at runtime by the interpreter.

You do not need to compile your program before executing it. This is similar to

PERL and PHP.

• Python is Interactive − You can actually sit at a Python prompt and interact

with the interpreter directly to write your programs.

• Python is Object-Oriented − Python supports Object-Oriented style or

technique of programming that encapsulates code within objects.

• Python is a Beginner's Language − Python is a great language for the

beginner-level programmers and supports the development of a wide range of

applications from simple text processing to WWW browsers to games.

History of Python
Python was developed by Guido van Rossum in the late eighties and early

nineties at the National Research Institute for Mathematics and Computer

Science in the Netherlands.

Python is derived from many other languages, including ABC, Modula-3, C,

C++, Algol-68, SmallTalk, and Unix shell and other scripting languages.

Python is copyrighted. Like Perl, Python source code is now available under

the GNU General Public License (GPL).

Python is now maintained by a core development team at the institute,

although Guido van Rossum still holds a vital role in directing its progress.

Python Features
Python's features include −

• Easy-to-learn − Python has few keywords, simple structure, and a clearly

defined syntax. This allows the student to pick up the language quickly.

• Easy-to-read − Python code is more clearly defined and visible to the eyes.

Computer Programming using Python: by Ravinder Sheoran

2

• Easy-to-maintain − Python's source code is fairly easy-to-maintain.

• A broad standard library − Python's bulk of the library is very portable and

cross-platform compatible on UNIX, Windows, and Macintosh.

• Interactive Mode − Python has support for an interactive mode which allows

interactive testing and debugging of snippets of code.

• Portable − Python can run on a wide variety of hardware platforms and has the

same interface on all platforms.

• Extendable − You can add low-level modules to the Python interpreter. These

modules enable programmers to add to or customize their tools to be more

efficient.

• Databases − Python provides interfaces to all major commercial databases.

• GUI Programming − Python supports GUI applications that can be created and

ported to many system calls, libraries and windows systems, such as Windows

MFC, Macintosh, and the X Window system of Unix.

• Scalable − Python provides a better structure and support for large programs

than shell scripting.

Apart from the above-mentioned features, Python has a big list of good

features, few are listed below −

• It supports functional and structured programming methods as well as OOP.

• It can be used as a scripting language or can be compiled to byte-code for

building large applications.

• It provides very high-level dynamic data types and supports dynamic type

checking.

• It supports automatic garbage collection.

• It can be easily integrated with C, C++, COM, ActiveX, CORBA, and Java.

Python- Variables

Variables are nothing but reserved memory locations to store values. This

means that when you create a variable you reserve some space in memory.

Computer Programming using Python: by Ravinder Sheoran

3

#!/usr/bin/python

counter = 100 # An integer assignment

miles = 1000.0 # A floating point

name = "John" # A string

print counter

print miles

print name

100

1000.0

John

a = b = c = 1

Based on the data type of a variable, the interpreter allocates memory and

decides what can be stored in the reserved memory. Therefore, by

assigning different data types to variables, you can store integers, decimals

or characters in these variables.

Assigning Values to Variables
Python variables do not need explicit declaration to reserve memory space.

The declaration happens automatically when you assign a value to a

variable. The equal sign (=) is used to assign values to variables.

The operand to the left of the = operator is the name of the variable and

the operand to the right of the = operator is the value stored in the

variable. For example −

Here, 100, 1000.0 and "John" are the values assigned to counter, miles,

and name variables, respectively. This produces the following result −

Multiple Assignment
Python allows you to assign a single value to several variables

simultaneously. For example −

Computer Programming using Python: by Ravinder Sheoran

4

a,b,c = 1,2,"john"

var1 = 1

var2 = 10

del var1[,var2[,var3[..... ,varN]]]]

del var

del var_a, var_b

Here, an integer object is created with the value 1, and all three variables

are assigned to the same memory location. You can also assign multiple

objects to multiple variables. For example −

Here, two integer objects with values 1 and 2 are assigned to variables a

and b respectively, and one string object with the value "john" is assigned

to the variable c.

Standard Data Types
The data stored in memory can be of many types. For example, a person's

age is stored as a numeric value and his or her address is stored as

alphanumeric characters. Python has various standard data types that are

used to define the operations possible on them and the storage method for

each of them.

Python has five standard data types −

• Numbers

• String

• List

• Tuple

• Dictionary

Python Numbers
Number data types store numeric values. Number objects are created when

you assign a value to them. For example −

You can also delete the reference to a number object by using the del

statement. The syntax of the del statement is −

You can delete a single object or multiple objects by using the del

statement. For example −

Computer Programming using Python: by Ravinder Sheoran

5

Python supports four different numerical types −

• int (signed integers)

• long (long integers, they can also be represented in octal and hexadecimal)

• float (floating point real values)

• complex (complex numbers)

Examples

Here are some examples of numbers −

int long float complex

10 51924361L 0.0 3.14j

100 -0x19323L 15.20 45.j

-786 0122L -21.9 9.322e-36j

080 0xDEFABCECBDAECBFBAEl 32.3+e18 .876j

-0490 535633629843L -90. -.6545+0J

-0x260 -052318172735L -32.54e100 3e+26J

0x69 -4721885298529L 70.2-E12 4.53e-7j

• Python allows you to use a lowercase l with long, but it is recommended that

you use only an uppercase L to avoid confusion with the number 1. Python

displays long integers with an uppercase L.

• A complex number consists of an ordered pair of real floating-point numbers

denoted by x + yj, where x and y are the real numbers and j is the imaginary

unit.

Python Strings

Computer Programming using Python: by Ravinder Sheoran

6

#!/usr/bin/python

str = 'Hello World!'

print str # Prints complete string

print str[0] # Prints first character of the string

print str[2:5] # Prints characters starting from 3rd to 5th

print str[2:] # Prints string starting from 3rd character

print str * 2 # Prints string two times

print str + "TEST" # Prints concatenated string

Hello World!

H
llo

llo World!

Hello World!Hello World!

Hello World!TEST

Strings in Python are identified as a contiguous set of characters

represented in the quotation marks. Python allows for either pairs of single

or double quotes. Subsets of strings can be taken using the slice operator ([

] and [:]) with indexes starting at 0 in the beginning of the string and

working their way from -1 at the end.

The plus (+) sign is the string concatenation operator and the asterisk (*) is

the repetition operator. For example −

This will produce the following result −

Python Lists
Lists are the most versatile of Python's compound data types. A list contains

items separated by commas and enclosed within square brackets ([]). To

some extent, lists are similar to arrays in C. One difference between them is

that all the items belonging to a list can be of different data type.

The values stored in a list can be accessed using the slice operator ([] and

[:]) with indexes starting at 0 in the beginning of the list and working their

Computer Programming using Python: by Ravinder Sheoran

7

#!/usr/bin/python

list = ['abcd', 786 , 2.23, 'john', 70.2]

tinylist = [123, 'john']

print list # Prints complete list

print list[0] # Prints first element of the list

print list[1:3] # Prints elements starting from 2nd till 3rd

print list[2:] # Prints elements starting from 3rd element

print tinylist * 2 # Prints list two times

print list + tinylist # Prints concatenated lists

['abcd', 786, 2.23, 'john', 70.2]

abcd
[786, 2.23]

[2.23, 'john', 70.2]

[123, 'john', 123, 'john']

['abcd', 786, 2.23, 'john', 70.2, 123, 'john']

#!/usr/bin/python

way to end -1. The plus (+) sign is the list concatenation operator, and the

asterisk (*) is the repetition operator. For example −

This produce the following result −

Python Tuples
A tuple is another sequence data type that is similar to the list. A tuple

consists of a number of values separated by commas. Unlike lists, however,

tuples are enclosed within parentheses.

The main differences between lists and tuples are: Lists are enclosed in

brackets ([]) and their elements and size can be changed, while tuples

are enclosed in parentheses (()) and cannot be updated. Tuples can be

thought of as read-only lists. For example −

Computer Programming using Python: by Ravinder Sheoran

8

('abcd', 786, 2.23, 'john', 70.2)

abcd

(786, 2.23)
(2.23, 'john', 70.2)

(123, 'john', 123, 'john')

('abcd', 786, 2.23, 'john', 70.2, 123, 'john')

#!/usr/bin/python

tuple = ('abcd', 786 , 2.23, 'john', 70.2)

list = ['abcd', 786 , 2.23, 'john', 70.2]

tuple[2] = 1000 # Invalid syntax with tuple

list[2] = 1000 # Valid syntax with list

This produce the following result −

The following code is invalid with tuple, because we attempted to update a

tuple, which is not allowed. Similar case is possible with lists −

Python Dictionary
Python's dictionaries are kind of hash table type. They work like associative

arrays or hashes found in Perl and consist of key-value pairs. A dictionary

key can be almost any Python type, but are usually numbers or strings.

Values, on the other hand, can be any arbitrary Python object.

Dictionaries are enclosed by curly braces ({ }) and values can be assigned

and accessed using square braces ([]). For example −

tuple = ('abcd', 786 , 2.23, 'john', 70.2)

tinytuple = (123, 'john')

print tuple # Prints complete list

print tuple[0] # Prints first element of the list

print tuple[1:3] # Prints elements starting from 2nd till 3rd

print tuple[2:] # Prints elements starting from 3rd element

print tinytuple * 2 # Prints list two times

print tuple + tinytuple # Prints concatenated lists

Computer Programming using Python: by Ravinder Sheoran

9

This is one

This is two

{'dept': 'sales', 'code': 6734, 'name': 'john'}

['dept', 'code', 'name']
['sales', 6734, 'john']

This produce the following result −

Dictionaries have no concept of order among elements. It is incorrect to say

that the elements are "out of order"; they are simply unordered.

Data Type Conversion
Sometimes, you may need to perform conversions between the built-in

types. To convert between types, you simply use the type name as a

function.

There are several built-in functions to perform conversion from one data

type to another. These functions return a new object representing the

converted value.

#!/usr/bin/python

dict = {}

dict['one'] = "This is one"

dict[2] = "This is two"

tinydict = {'name': 'john','code':6734, 'dept': 'sales'}

print dict['one'] # Prints value for 'one' key

print dict[2] # Prints value for 2 key

print tinydict # Prints complete dictionary

print tinydict.keys() # Prints all the keys

print tinydict.values() # Prints all the values

Computer Programming using Python: by Ravinder Sheoran

10

Sr.No. Function & Description

1
int(x [,base])

Converts x to an integer. base specifies the base if x is a string.

2
long(x [,base])

Converts x to a long integer. base specifies the base if x is a string.

3
float(x)

Converts x to a floating-point number.

4
complex(real [,imag])

Creates a complex number.

5
str(x)

Converts object x to a string representation.

6
repr(x)

Converts object x to an expression string.

7
eval(str)

Evaluates a string and returns an object.

8
tuple(s)

Converts s to a tuple.

9
list(s)

Converts s to a list.

10
set(s)

Computer Programming using Python: by Ravinder Sheoran

11

Converts s to a set.

11
dict(d)

Creates a dictionary. d must be a sequence of (key,value) tuples.

12
frozenset(s)

Converts s to a frozen set.

13
chr(x)

Converts an integer to a character.

14
unichr(x)

Converts an integer to a Unicode character.

15
ord(x)

Converts a single character to its integer value.

16
hex(x)

Converts an integer to a hexadecimal string.

17
oct(x)

Converts an integer to an octal string.

Basic Operators

Operators are the constructs which can manipulate the value of operands.

Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and

+ is called operator.

Types of Operator
Python language supports the following types of operators.

Computer Programming using Python: by Ravinder Sheoran

12

• Arithmetic Operators

• Comparison (Relational) Operators

• Assignment Operators

• Logical Operators

• Bitwise Operators

• Membership Operators

• Identity Operators

Let us have a look on all operators one by one.

Python Arithmetic Operators
Assume variable a holds 10 and variable b holds 20, then −

[Show Example]

Operator Description Example

+ Addition Adds values on either side of the operator. a + b =
30

- Subtraction Subtracts right hand operand from left hand operand. a – b = -
10

*
Multiplication

Multiplies values on either side of the operator a * b =
200

/ Division Divides left hand operand by right hand operand b / a = 2

% Modulus Divides left hand operand by right hand operand and
returns remainder

b % a =
0

** Exponent Performs exponential (power) calculation on operators a**b

=10 to

the
power 20

https://www.tutorialspoint.com/python/arithmetic_operators_example.htm

Computer Programming using Python: by Ravinder Sheoran

13

// Floor Division - The division of operands where the
result is the quotient in which the digits after the

decimal point are removed. But if one of the operands
is negative, the result is floored, i.e., rounded away
from zero (towards negative infinity) −

9//2 = 4
and

9.0//2.0
= 4.0, -
11//3 =

-4, -
11.0//3

= -4.0

Python Comparison Operators
These operators compare the values on either sides of them and decide the

relation among them. They are also called Relational operators.

Assume variable a holds 10 and variable b holds 20, then −

[Show Example]

Operator Description Example

== If the values of two operands are equal, then the condition
becomes true.

(a == b)
is not
true.

!= If values of two operands are not equal, then condition
becomes true.

(a != b)
is true.

<> If values of two operands are not equal, then condition
becomes true.

(a <> b)
is true.
This is

similar to
!=

operator.

> If the value of left operand is greater than the value of
right operand, then condition becomes true.

(a > b)
is not

true.

< If the value of left operand is less than the value of right
operand, then condition becomes true.

(a < b)
is true.

https://www.tutorialspoint.com/python/comparison_operators_example.htm

Computer Programming using Python: by Ravinder Sheoran

14

>= If the value of left operand is greater than or equal to the
value of right operand, then condition becomes true.

(a >= b)
is not

true.

<= If the value of left operand is less than or equal to the
value of right operand, then condition becomes true.

(a <= b)
is true.

Python Assignment Operators
Assume variable a holds 10 and variable b holds 20, then −

[Show Example]

Operator Description Example

= Assigns values from right side operands to left side
operand

c = a + b
assigns

value of a
+ b into c

+= Add AND It adds right operand to the left operand and assign

the result to left operand

c += a is

equivalent
to c = c +
a

-= Subtract
AND

It subtracts right operand from the left operand and
assign the result to left operand

c -= a is
equivalent

to c = c -
a

*= Multiply
AND

It multiplies right operand with the left operand and
assign the result to left operand

c *= a is
equivalent
to c = c *

a

/= Divide AND It divides left operand with the right operand and
assign the result to left operand

c /= a is
equivalent

to c = c /
ac /= a is
equivalent

to c = c /

https://www.tutorialspoint.com/python/assignment_operators_example.htm

Computer Programming using Python: by Ravinder Sheoran

15

a

%= Modulus
AND

It takes modulus using two operands and assign the
result to left operand

c %= a is
equivalent
to c = c

% a

**= Exponent
AND

Performs exponential (power) calculation on
operators and assign value to the left operand

c **= a is
equivalent
to c = c

** a

//= Floor
Division

It performs floor division on operators and assign
value to the left operand

c //= a is
equivalent
to c = c //

a

Python Bitwise Operators
Bitwise operator works on bits and performs bit by bit operation. Assume if

a = 60; and b = 13; Now in binary format they will be as follows −

a = 0011 1100

b = 0000 1101

a&b = 0000 1100

a|b = 0011 1101

a^b = 0011 0001

~a = 1100 0011

There are following Bitwise operators supported by Python language

[Show Example]

Operator Description Example

https://www.tutorialspoint.com/python/bitwise_operators_example.htm

Computer Programming using Python: by Ravinder Sheoran

16

& Binary AND Operator copies a bit to the result if it exists in
both operands

(a & b)
(means

0000 1100)

| Binary OR It copies a bit if it exists in either operand. (a | b) = 61
(means

0011 1101)

^ Binary XOR It copies the bit if it is set in one operand but
not both.

(a ^ b) =
49 (means
0011 0001)

~ Binary Ones
Complement

It is unary and has the effect of 'flipping' bits.

(~a) = -61

(means
1100 0011

in 2's
complement

form due to
a signed
binary

number.

<< Binary Left
Shift

The left operands value is moved left by the
number of bits specified by the right operand.

a << 2 =
240 (means
1111 0000)

>> Binary Right
Shift

The left operands value is moved right by the
number of bits specified by the right operand.

a >> 2 =
15 (means
0000 1111)

Python Logical Operators
There are following logical operators supported by Python language.

Assume variable a holds 10 and variable b holds 20 then

[Show Example]

Operator Description Example

and Logical If both the operands are true then condition becomes (a and b)

https://www.tutorialspoint.com/python/logical_operators_example.htm

Computer Programming using Python: by Ravinder Sheoran

17

AND true. is true.

or Logical OR If any of the two operands are non-zero then
condition becomes true.

(a or b)
is true.

not Logical
NOT

Used to reverse the logical state of its operand. Not(a
and b) is
false.

Used to reverse the logical state of its operand.

Python Membership Operators
Python’s membership operators test for membership in a sequence, such as

strings, lists, or tuples. There are two membership operators as explained

below −

[Show Example]

Operator Description Example

in Evaluates to true if it finds a variable in the specified

sequence and false otherwise.

x in y,

here in
results in
a 1 if x is

a
member
of

sequence
y.

not in Evaluates to true if it does not finds a variable in the
specified sequence and false otherwise.

x not in
y, here
not in

results in
a 1 if x is

not a
member
of

sequence
y.

https://www.tutorialspoint.com/python/membership_operators_example.htm

Computer Programming using Python: by Ravinder Sheoran

18

Python Identity Operators
Identity operators compare the memory locations of two objects. There are

two Identity operators explained below −

[Show Example]

Operator Description Example

is Evaluates to true if the variables on either side of the
operator point to the same object and false
otherwise.

x is y,

here is results
in 1 if id(x)

equals id(y).

is not Evaluates to false if the variables on either side of the
operator point to the same object and true otherwise.

x is not y,
here is

not results in
1 if id(x) is

not equal to
id(y).

Python Operators Precedence
The following table lists all operators from highest precedence to lowest.

[Show Example]

Sr.No. Operator & Description

1
**

Exponentiation (raise to the power)

2
~ + -

Complement, unary plus and minus (method names for the last two are

+@ and -@)

3
* / % //

https://www.tutorialspoint.com/python/identity_operators_example.htm
https://www.tutorialspoint.com/python/operators_precedence_example.htm

Computer Programming using Python: by Ravinder Sheoran

19

Multiply, divide, modulo and floor division

4
+ -

Addition and subtraction

5
>> <<

Right and left bitwise shift

6
&

Bitwise 'AND'

7
^ |

Bitwise exclusive `OR' and regular `OR'

8
<= < > >=

Comparison operators

9
<> == !=

Equality operators

10
= %= /= //= -= += *= **=

Assignment operators

11
is is not

Identity operators

12
in not in

Membership operators

13
not or and

Computer Programming using Python: by Ravinder Sheoran

20

Logical operators

Decision Making

Decision making is anticipation of conditions occurring while execution of

the program and specifying actions taken according to the conditions.

Decision structures evaluate multiple expressions which produce TRUE or

FALSE as outcome. You need to determine which action to take and which

statements to execute if outcome is TRUE or FALSE otherwise.

Following is the general form of a typical decision making structure found in

most of the programming languages −

Python programming language assumes any non-zero and non-

null values as TRUE, and if it is either zero or null, then it is assumed as

FALSE value.

Python programming language provides following types of decision making

statements. Click the following links to check their detail.

Sr.No. Statement & Description

Computer Programming using Python: by Ravinder Sheoran

21

#!/usr/bin/python

var = 100

if (var == 100) : print "Value of expression is 100"

print "Good bye!"

Value of expression is 100

Good bye!

1 if statements

An if statement consists of a boolean expression followed by one or

more statements.

2 if...else statements

An if statement can be followed by an optional else statement, which

executes when the boolean expression is FALSE.

3 nested if statements

You can use one if or else if statement inside another if or else

ifstatement(s).

Let us go through each decision making briefly −

Single Statement Suites
If the suite of an if clause consists only of a single line, it may go on the

same line as the header statement.

Here is an example of a one-line if clause −

When the above code is executed, it produces the following result −

Loops

In general, statements are executed sequentially: The first statement in a

function is executed first, followed by the second, and so on. There may be

a situation when you need to execute a block of code several number of

times.

https://www.tutorialspoint.com/python/python_if_statement.htm
https://www.tutorialspoint.com/python/python_if_else.htm
https://www.tutorialspoint.com/python/nested_if_statements_in_python.htm

Computer Programming using Python: by Ravinder Sheoran

22

Programming languages provide various control structures that allow for

more complicated execution paths.

A loop statement allows us to execute a statement or group of statements

multiple times. The following diagram illustrates a loop statement −

Python programming language provides following types of loops to handle

looping requirements.

Sr.No. Loop Type & Description

1 while loop

Repeats a statement or group of statements while a given condition is

TRUE. It tests the condition before executing the loop body.

2 for loop

Executes a sequence of statements multiple times and abbreviates the

code that manages the loop variable.

3 nested loops

You can use one or more loop inside any another while, for or do..while

https://www.tutorialspoint.com/python/python_while_loop.htm
https://www.tutorialspoint.com/python/python_for_loop.htm
https://www.tutorialspoint.com/python/python_nested_loops.htm

Computer Programming using Python: by Ravinder Sheoran

23

loop.

Loop Control Statements
Loop control statements change execution from its normal sequence. When

execution leaves a scope, all automatic objects that were created in that

scope are destroyed.

Python supports the following control statements. Click the following links

to check their detail.

Let us go through the loop control statements briefly

Sr.No. Control Statement & Description

1 break statement

Terminates the loop statement and transfers execution to the statement

immediately following the loop.

2 continue statement

Causes the loop to skip the remainder of its body and immediately retest

its condition prior to reiterating.

3 pass statement

The pass statement in Python is used when a statement is required

syntactically but you do not want any command or code to execute.

Lists

he most basic data structure in Python is the sequence. Each element of a

sequence is assigned a number - its position or index. The first index is

zero, the second index is one, and so forth.

Python has six built-in types of sequences, but the most common ones are

lists and tuples, which we would see in this tutorial.

There are certain things you can do with all sequence types. These

operations include indexing, slicing, adding, multiplying, and checking for

https://www.tutorialspoint.com/python/python_break_statement.htm
https://www.tutorialspoint.com/python/python_continue_statement.htm
https://www.tutorialspoint.com/python/python_pass_statement.htm

Computer Programming using Python: by Ravinder Sheoran

24

list1 = ['physics', 'chemistry', 1997, 2000];

list2 = [1, 2, 3, 4, 5];

list3 = ["a", "b", "c", "d"]

#!/usr/bin/python

list1 = ['physics', 'chemistry', 1997, 2000];

list2 = [1, 2, 3, 4, 5, 6, 7];

print "list1[0]: ", list1[0]

print "list2[1:5]: ", list2[1:5]

list1[0]: physics

list2[1:5]: [2, 3, 4, 5]

membership. In addition, Python has built-in functions for finding the length

of a sequence and for finding its largest and smallest elements.

Python Lists
The list is a most versatile datatype available in Python which can be

written as a list of comma-separated values (items) between square

brackets. Important thing about a list is that items in a list need not be of

the same type.

Creating a list is as simple as putting different comma-separated values

between square brackets. For example −

Similar to string indices, list indices start at 0, and lists can be sliced,

concatenated and so on.

Accessing Values in Lists
To access values in lists, use the square brackets for slicing along with the

index or indices to obtain value available at that index. For example −

When the above code is executed, it produces the following result −

Updating Lists

Computer Programming using Python: by Ravinder Sheoran

25

#!/usr/bin/python

list = ['physics', 'chemistry', 1997, 2000];

print "Value available at index 2 : "

print list[2]

list[2] = 2001;

print "New value available at index 2 : "

print list[2]

Value available at index 2 :

1997

New value available at index 2 :
2001

#!/usr/bin/python

list1 = ['physics', 'chemistry', 1997, 2000];

print list1

del list1[2];

print "After deleting value at index 2 : "

You can update single or multiple elements of lists by giving the slice on the

left-hand side of the assignment operator, and you can add to elements in a

list with the append() method. For example −

Note − append() method is discussed in subsequent section.

When the above code is executed, it produces the following result −

Delete List Elements
To remove a list element, you can use either the del statement if you know

exactly which element(s) you are deleting or the remove() method if you do

not know. For example −

Computer Programming using Python: by Ravinder Sheoran

26

['physics', 'chemistry', 1997, 2000]

After deleting value at index 2 :
['physics', 'chemistry', 2000]

L = ['spam', 'Spam', 'SPAM!']

When the above code is executed, it produces following result −

Note − remove() method is discussed in subsequent section.

Basic List Operations
Lists respond to the + and * operators much like strings; they mean

concatenation and repetition here too, except that the result is a new list,

not a string.

In fact, lists respond to all of the general sequence operations we used on

strings in the prior chapter.

Python Expression Results Description

len([1, 2, 3]) 3 Length

[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] Concatenation

['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'] Repetition

3 in [1, 2, 3] True Membership

for x in [1, 2, 3]: print x, 1 2 3 Iteration

Indexing, Slicing, and Matrixes
Because lists are sequences, indexing and slicing work the same way for

lists as they do for strings.

Assuming following input −

print list1

Computer Programming using Python: by Ravinder Sheoran

27

Python Expression Results Description

L[2] SPAM! Offsets start at zero

L[-2] Spam Negative: count from the
right

L[1:] ['Spam', 'SPAM!'] Slicing fetches sections

Built-in List Functions & Methods
Python includes the following list functions −

Sr.No. Function with Description

1 cmp(list1, list2)

Compares elements of both lists.

2 len(list)

Gives the total length of the list.

3 max(list)

Returns item from the list with max value.

4 min(list)

Returns item from the list with min value.

5 list(seq)

Converts a tuple into list.

Python includes following list methods

Sr.No. Methods with Description

1 list.append(obj)

https://www.tutorialspoint.com/python/list_cmp.htm
https://www.tutorialspoint.com/python/list_len.htm
https://www.tutorialspoint.com/python/list_max.htm
https://www.tutorialspoint.com/python/list_min.htm
https://www.tutorialspoint.com/python/list_list.htm
https://www.tutorialspoint.com/python/list_append.htm

Computer Programming using Python: by Ravinder Sheoran

28

tup1 = ('physics', 'chemistry', 1997, 2000);

tup2 = (1, 2, 3, 4, 5);

Appends object obj to list

2 list.count(obj)

Returns count of how many times obj occurs in list

3 list.extend(seq)

Appends the contents of seq to list

4 list.index(obj)

Returns the lowest index in list that obj appears

5 list.insert(index, obj)

Inserts object obj into list at offset index

6 list.pop(obj=list[-1])

Removes and returns last object or obj from list

7 list.remove(obj)

Removes object obj from list

8 list.reverse()

Reverses objects of list in place

9 list.sort([func])

Sorts objects of list, use compare func if given

Tuples

A tuple is a sequence of immutable Python objects. Tuples are sequences,

just like lists. The differences between tuples and lists are, the tuples

cannot be changed unlike lists and tuples use parentheses, whereas lists

use square brackets.

Creating a tuple is as simple as putting different comma-separated values.

Optionally you can put these comma-separated values between parentheses

also. For example −

https://www.tutorialspoint.com/python/list_count.htm
https://www.tutorialspoint.com/python/list_extend.htm
https://www.tutorialspoint.com/python/list_index.htm
https://www.tutorialspoint.com/python/list_insert.htm
https://www.tutorialspoint.com/python/list_pop.htm
https://www.tutorialspoint.com/python/list_remove.htm
https://www.tutorialspoint.com/python/list_reverse.htm
https://www.tutorialspoint.com/python/list_sort.htm

Computer Programming using Python: by Ravinder Sheoran

29

tup1 = ();

tup1 = (50,);

#!/usr/bin/python

tup1 = ('physics', 'chemistry', 1997, 2000);

tup2 = (1, 2, 3, 4, 5, 6, 7);

print "tup1[0]: ", tup1[0];

print "tup2[1:5]: ", tup2[1:5];

tup1[0]: physics

tup2[1:5]: [2, 3, 4, 5]

#!/usr/bin/python

tup1 = (12, 34.56);

The empty tuple is written as two parentheses containing nothing −

To write a tuple containing a single value you have to include a comma,

even though there is only one value −

Like string indices, tuple indices start at 0, and they can be sliced,

concatenated, and so on.

Accessing Values in Tuples
To access values in tuple, use the square brackets for slicing along with the

index or indices to obtain value available at that index. For example −

When the above code is executed, it produces the following result −

Updating Tuples
Tuples are immutable which means you cannot update or change the values

of tuple elements. You are able to take portions of existing tuples to create

new tuples as the following example demonstrates −

tup3 = "a", "b", "c", "d";

Computer Programming using Python: by Ravinder Sheoran

30

(12, 34.56, 'abc', 'xyz')

#!/usr/bin/python

tup = ('physics', 'chemistry', 1997, 2000);

print tup;

del tup;

print "After deleting tup : ";

print tup;

('physics', 'chemistry', 1997, 2000)

After deleting tup :

Traceback (most recent call last):
File "test.py", line 9, in <module>

When the above code is executed, it produces the following result −

Delete Tuple Elements
Removing individual tuple elements is not possible. There is, of course,

nothing wrong with putting together another tuple with the undesired

elements discarded.

To explicitly remove an entire tuple, just use the del statement. For

example −

This produces the following result. Note an exception raised, this is because

after del tup tuple does not exist any more −

tup2 = ('abc', 'xyz');

Following action is not valid for tuples

tup1[0] = 100;

So let's create a new tuple as follows

tup3 = tup1 + tup2;

print tup3;

Computer Programming using Python: by Ravinder Sheoran

31

L = ('spam', 'Spam', 'SPAM!')

Basic Tuples Operations
Tuples respond to the + and * operators much like strings; they mean

concatenation and repetition here too, except that the result is a new tuple,

not a string.

In fact, tuples respond to all of the general sequence operations we used on

strings in the prior chapter −

Python Expression Results Description

len((1, 2, 3)) 3 Length

(1, 2, 3) + (4, 5, 6) (1, 2, 3, 4, 5, 6) Concatenation

('Hi!',) * 4 ('Hi!', 'Hi!', 'Hi!', 'Hi!') Repetition

3 in (1, 2, 3) True Membership

for x in (1, 2, 3): print x, 1 2 3 Iteration

Indexing, Slicing, and Matrixes
Because tuples are sequences, indexing and slicing work the same way for

tuples as they do for strings. Assuming following input −

Python Expression Results Description

L[2] 'SPAM!' Offsets start at zero

print tup;

NameError: name 'tup' is not defined

Computer Programming using Python: by Ravinder Sheoran

32

#!/usr/bin/python

print 'abc', -4.24e93, 18+6.6j, 'xyz';

x, y = 1, 2;

print "Value of x , y : ", x,y;

abc -4.24e+93 (18+6.6j) xyz

Value of x , y : 1 2

L[-2] 'Spam' Negative: count from the
right

L[1:] ['Spam', 'SPAM!'] Slicing fetches sections

No Enclosing Delimiters
Any set of multiple objects, comma-separated, written without identifying

symbols, i.e., brackets for lists, parentheses for tuples, etc., default to

tuples, as indicated in these short examples −

When the above code is executed, it produces the following result −

Built-in Tuple Functions
Python includes the following tuple functions −

Sr.No. Function with Description

1 cmp(tuple1, tuple2)

Compares elements of both tuples.

2 len(tuple)

Gives the total length of the tuple.

3 max(tuple)

https://www.tutorialspoint.com/python/tuple_cmp.htm
https://www.tutorialspoint.com/python/tuple_len.htm
https://www.tutorialspoint.com/python/tuple_max.htm

Computer Programming using Python: by Ravinder Sheoran

33

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

print "dict['Name']: ", dict['Name']

print "dict['Age']: ", dict['Age']

dict['Name']: Zara

dict['Age']: 7

Returns item from the tuple with max value.

4 min(tuple)

Returns item from the tuple with min value.

5 tuple(seq)

Converts a list into tuple.

Dictionary

ach key is separated from its value by a colon (:), the items are separated

by commas, and the whole thing is enclosed in curly braces. An empty

dictionary without any items is written with just two curly braces, like this:

{}.

Keys are unique within a dictionary while values may not be. The values of

a dictionary can be of any type, but the keys must be of an immutable data

type such as strings, numbers, or tuples.

Accessing Values in Dictionary
To access dictionary elements, you can use the familiar square brackets

along with the key to obtain its value. Following is a simple example −

When the above code is executed, it produces the following result −

If we attempt to access a data item with a key, which is not part of the

dictionary, we get an error as follows −

https://www.tutorialspoint.com/python/tuple_min.htm
https://www.tutorialspoint.com/python/tuple_tuple.htm

Computer Programming using Python: by Ravinder Sheoran

34

dict['Alice']:

Traceback (most recent call last):

File "test.py", line 4, in <module>

print "dict['Alice']: ", dict['Alice'];
KeyError: 'Alice'

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

dict['Age'] = 8; # update existing entry

dict['School'] = "DPS School"; # Add new entry

print "dict['Age']: ", dict['Age']

print "dict['School']: ", dict['School']

dict['Age']: 8

dict['School']: DPS School

When the above code is executed, it produces the following result −

Updating Dictionary
You can update a dictionary by adding a new entry or a key-value pair,

modifying an existing entry, or deleting an existing entry as shown below in

the simple example −

When the above code is executed, it produces the following result −

Delete Dictionary Elements

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

print "dict['Alice']: ", dict['Alice']

Computer Programming using Python: by Ravinder Sheoran

35

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

del dict['Name']; # remove entry with key 'Name'

dict.clear(); # remove all entries in dict

del dict ; # delete entire dictionary

print "dict['Age']: ", dict['Age']

print "dict['School']: ", dict['School']

dict['Age']:

Traceback (most recent call last):

File "test.py", line 8, in <module>
print "dict['Age']: ", dict['Age'];

TypeError: 'type' object is unsubscriptable

You can either remove individual dictionary elements or clear the entire

contents of a dictionary. You can also delete entire dictionary in a single

operation.

To explicitly remove an entire dictionary, just use the del statement.

Following is a simple example −

This produces the following result. Note that an exception is raised because

after del dict dictionary does not exist any more −

Note − del() method is discussed in subsequent section.

Properties of Dictionary Keys
Dictionary values have no restrictions. They can be any arbitrary Python

object, either standard objects or user-defined objects. However, same is

not true for the keys.

There are two important points to remember about dictionary keys −

(a) More than one entry per key not allowed. Which means no duplicate

key is allowed. When duplicate keys encountered during assignment, the

last assignment wins. For example −

Computer Programming using Python: by Ravinder Sheoran

36

dict['Name']: Manni

#!/usr/bin/python

dict = {['Name']: 'Zara', 'Age': 7}

print "dict['Name']: ", dict['Name']

Traceback (most recent call last):

File "test.py", line 3, in <module>

dict = {['Name']: 'Zara', 'Age': 7};
TypeError: unhashable type: 'list'

When the above code is executed, it produces the following result −

(b) Keys must be immutable. Which means you can use strings, numbers

or tuples as dictionary keys but something like ['key'] is not allowed.

Following is a simple example −

When the above code is executed, it produces the following result −

Built-in Dictionary Functions & Methods
Python includes the following dictionary functions −

Sr.No. Function with Description

1 cmp(dict1, dict2)

Compares elements of both dict.

2 len(dict)

Gives the total length of the dictionary. This would be equal to the

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Name': 'Manni'}

print "dict['Name']: ", dict['Name']

https://www.tutorialspoint.com/python/dictionary_cmp.htm
https://www.tutorialspoint.com/python/dictionary_len.htm

Computer Programming using Python: by Ravinder Sheoran

37

number of items in the dictionary.

3 str(dict)

Produces a printable string representation of a dictionary

4 type(variable)

Returns the type of the passed variable. If passed variable is dictionary,

then it would return a dictionary type.

Python includes following dictionary methods −

Sr.No. Methods with Description

1 dict.clear()

Removes all elements of dictionary dict

2 dict.copy()

Returns a shallow copy of dictionary dict

3 dict.fromkeys()

Create a new dictionary with keys from seq and values set to value.

4 dict.get(key, default=None)

For key key, returns value or default if key not in dictionary

5 dict.has_key(key)

Returns true if key in dictionary dict, false otherwise

6 dict.items()

Returns a list of dict's (key, value) tuple pairs

7 dict.keys()

Returns list of dictionary dict's keys

8 dict.setdefault(key, default=None)

Similar to get(), but will set dict[key]=default if key is not already in dict

https://www.tutorialspoint.com/python/dictionary_str.htm
https://www.tutorialspoint.com/python/dictionary_type.htm
https://www.tutorialspoint.com/python/dictionary_clear.htm
https://www.tutorialspoint.com/python/dictionary_copy.htm
https://www.tutorialspoint.com/python/dictionary_fromkeys.htm
https://www.tutorialspoint.com/python/dictionary_get.htm
https://www.tutorialspoint.com/python/dictionary_has_key.htm
https://www.tutorialspoint.com/python/dictionary_items.htm
https://www.tutorialspoint.com/python/dictionary_keys.htm
https://www.tutorialspoint.com/python/dictionary_setdefault.htm

Computer Programming using Python: by Ravinder Sheoran

38

$ python

Python 2.4.3 (#1, Nov 11 2010, 13:34:43)

[GCC 4.1.2 20080704 (Red Hat 4.1.2-48)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

>>> print "Hello, Python!"

Hello, Python!

9 dict.update(dict2)

Adds dictionary dict2's key-values pairs to dict

10 dict.values()

Returns list of dictionary dict's values

Basic Syntax

The Python language has many similarities to Perl, C, and Java. However,

there are some definite differences between the languages.

First Python Program
Let us execute programs in different modes of programming.

Interactive Mode Programming

Invoking the interpreter without passing a script file as a parameter brings

up the following prompt −

Type the following text at the Python prompt and press the Enter −

If you are running new version of Python, then you would need to use print

statement with parenthesis as in print ("Hello, Python!");. However in

Python version 2.4.3, this produces the following result −

Script Mode Programming

https://www.tutorialspoint.com/python/dictionary_update.htm
https://www.tutorialspoint.com/python/dictionary_values.htm

Computer Programming using Python: by Ravinder Sheoran

39

print "Hello, Python!"

$ python test.py

Hello, Python!

#!/usr/bin/python

print "Hello, Python!"

$ chmod +x test.py # This is to make file executable

$./test.py

Hello, Python!

Invoking the interpreter with a script parameter begins execution of the

script and continues until the script is finished. When the script is finished,

the interpreter is no longer active.

Let us write a simple Python program in a script. Python files have

extension .py. Type the following source code in a test.py file −

We assume that you have Python interpreter set in PATH variable. Now, try

to run this program as follows −

This produces the following result −

Let us try another way to execute a Python script. Here is the modified

test.py file −

We assume that you have Python interpreter available in /usr/bin directory.

Now, try to run this program as follows −

This produces the following result −

Python Identifiers
A Python identifier is a name used to identify a variable, function, class,

module or other object. An identifier starts with a letter A to Z or a to z or

Computer Programming using Python: by Ravinder Sheoran

40

an underscore (_) followed by zero or more letters, underscores and digits

(0 to 9).

Python does not allow punctuation characters such as @, $, and % within

identifiers. Python is a case sensitive programming language.

Thus, Manpower and manpower are two different identifiers in Python.

Here are naming conventions for Python identifiers −

• Class names start with an uppercase letter. All other identifiers start with a

lowercase letter.

• Starting an identifier with a single leading underscore indicates that the

identifier is private.

• Starting an identifier with two leading underscores indicates a strongly private

identifier.

• If the identifier also ends with two trailing underscores, the identifier is a

language-defined special name.

Reserved Words
The following list shows the Python keywords. These are reserved words

and you cannot use them as constant or variable or any other identifier

names. All the Python keywords contain lowercase letters only.

and exec not

assert finally or

break for pass

class from print

continue global raise

def if return

Computer Programming using Python: by Ravinder Sheoran

41

if True:

print "True"

else:
print "False"

if True: print

"Answer" print

"True" else:

print "Answer"

print "False"

del import try

elif in while

else is with

except lambda yield

Lines and Indentation
Python provides no braces to indicate blocks of code for class and function

definitions or flow control. Blocks of code are denoted by line indentation,

which is rigidly enforced.

The number of spaces in the indentation is variable, but all statements

within the block must be indented the same amount. For example −

However, the following block generates an error −

Thus, in Python all the continuous lines indented with same number of

spaces would form a block. The following example has various statement

blocks −

Note − Do not try to understand the logic at this point of time. Just make

sure you understood various blocks even if they are without braces.

Computer Programming using Python: by Ravinder Sheoran

42

#!/usr/bin/python

import sys

try:

open file stream

file = open(file_name, "w")

except IOError:

print "There was an error writing to", file_name

sys.exit()

print "Enter '", file_finish,

print "' When finished"

while file_text != file_finish:

file_text = raw_input("Enter text: ")

if file_text == file_finish:

close the file

file.close

break

file.write(file_text)

file.write("\n")

file.close()

file_name = raw_input("Enter filename: ")

if len(file_name) == 0:

print "Next time please enter something"

sys.exit()

try:

file = open(file_name, "r")

except IOError:

Computer Programming using Python: by Ravinder Sheoran

43

total = item_one + \

item_two + \
item_three

days = ['Monday', 'Tuesday', 'Wednesday',

'Thursday', 'Friday']

word = 'word'

sentence = "This is a sentence."

paragraph = """This is a paragraph. It is
made up of multiple lines and sentences."""

#!/usr/bin/python

Multi-Line Statements
Statements in Python typically end with a new line. Python does, however,

allow the use of the line continuation character (\) to denote that the line

should continue. For example −

Statements contained within the [], {}, or () brackets do not need to use

the line continuation character. For example −

Quotation in Python
Python accepts single ('), double (") and triple (''' or """) quotes to denote

string literals, as long as the same type of quote starts and ends the string.

The triple quotes are used to span the string across multiple lines. For

example, all the following are legal −

Comments in Python
A hash sign (#) that is not inside a string literal begins a comment. All

characters after the # and up to the end of the physical line are part of the

comment and the Python interpreter ignores them.

print "There was an error reading file"

sys.exit()

file_text = file.read()

file.close()

print file_text

Computer Programming using Python: by Ravinder Sheoran

44

Hello, Python!

name = "Madisetti" # This is again comment

This is a comment.

This is a comment, too.

This is a comment, too.
I said that already.

#!/usr/bin/python

raw_input("\n\nPress the enter key to exit.")

This produces the following result −

You can type a comment on the same line after a statement or expression

−

You can comment multiple lines as follows −

Following triple-quoted string is also ignored by Python interpreter and can

be used as a multiline comments:

Using Blank Lines
A line containing only whitespace, possibly with a comment, is known as a

blank line and Python totally ignores it.

In an interactive interpreter session, you must enter an empty physical line

to terminate a multiline statement.

Waiting for the User
The following line of the program displays the prompt, the statement saying

“Press the enter key to exit”, and waits for the user to take action −

Here, "\n\n" is used to create two new lines before displaying the actual

line. Once the user presses the key, the program ends. This is a nice trick

to keep a console window open until the user is done with an application.

'''

This is a multiline

comment.
'''

First comment

print "Hello, Python!" # second comment

Computer Programming using Python: by Ravinder Sheoran

45

import sys; x = 'foo'; sys.stdout.write(x + '\n')

if expression :

suite

elif expression :
suite

else :

suite

$ python -h

usage: python [option] ... [-c cmd | -m mod | file | -] [arg] ...

Options and arguments (and corresponding environment variables):

-c cmd : program passed in as string (terminates option list)

-d : debug output from parser (also PYTHONDEBUG=x)

-E : ignore environment variables (such as PYTHONPATH)

-h : print this help message and exit

[etc.]

Multiple Statements on a Single Line
The semicolon (;) allows multiple statements on the single line given that

neither statement starts a new code block. Here is a sample snip using the

semicolon −

Multiple Statement Groups as Suites
A group of individual statements, which make a single code block are

called suites in Python. Compound or complex statements, such as if,

while, def, and class require a header line and a suite.

Header lines begin the statement (with the keyword) and terminate with a

colon (:) and are followed by one or more lines which make up the suite.

For example −

Command Line Arguments
Many programs can be run to provide you with some basic information

about how they should be run. Python enables you to do this with -h −

Computer Programming using Python: by Ravinder Sheoran

46

re.match(pattern, string, flags=0)

You can also program your script in such a way that it should accept various

options. Command Line Arguments is an advanced topic and should be

studied a bit later once you have gone through rest of the Python concepts

Regular Expressions

A regular expression is a special sequence of characters that helps you

match or find other strings or sets of strings, using a specialized syntax

held in a pattern. Regular expressions are widely used in UNIX world.

The module re provides full support for Perl-like regular expressions in

Python. The re module raises the exception re.error if an error occurs while

compiling or using a regular expression.

We would cover two important functions, which would be used to handle

regular expressions. But a small thing first: There are various characters,

which would have special meaning when they are used in regular

expression. To avoid any confusion while dealing with regular expressions,

we would use Raw Strings as r'expression'.

The match Function
This function attempts to match RE pattern to string with optional flags.

Here is the syntax for this function −

Here is the description of the parameters −

Sr.No. Parameter & Description

1
pattern

This is the regular expression to be matched.

2
string

This is the string, which would be searched to match the pattern at the

beginning of string.

https://www.tutorialspoint.com/python/python_command_line_arguments.htm

Computer Programming using Python: by Ravinder Sheoran

47

#!/usr/bin/python

import re

line = "Cats are smarter than dogs"

matchObj = re.match(r'(.*) are (.*?) .*', line, re.M|re.I)

if matchObj:

print "matchObj.group() : ", matchObj.group()

print "matchObj.group(1) : ", matchObj.group(1)

print "matchObj.group(2) : ", matchObj.group(2)

else:

3
flags

You can specify different flags using bitwise OR (|). These are modifiers,

which are listed in the table below.

The re.match function returns a match object on success, None on failure.

We usegroup(num) or groups() function of match object to get matched

expression.

Sr.No. Match Object Method & Description

1
group(num=0)

This method returns entire match (or specific subgroup num)

2
groups()

This method returns all matching subgroups in a tuple (empty if there

weren't any)

Example

Computer Programming using Python: by Ravinder Sheoran

48

matchObj.group() : Cats are smarter than dogs

matchObj.group(1) : Cats
matchObj.group(2) : smarter

re.search(pattern, string, flags=0)

When the above code is executed, it produces following result −

The search Function
This function searches for first occurrence of RE pattern within string with

optional flags.

Here is the syntax for this function −

Here is the description of the parameters −

Sr.No. Parameter & Description

1
pattern

This is the regular expression to be matched.

2
string

This is the string, which would be searched to match the pattern

anywhere in the string.

3
flags

You can specify different flags using bitwise OR (|). These are modifiers,

which are listed in the table below.

The re.search function returns a match object on success, none on failure.

We use group(num) or groups() function of match object to get matched

expression.

Sr.No. Match Object Methods & Description

1
group(num=0)

print "No match!!"

Computer Programming using Python: by Ravinder Sheoran

49

#!/usr/bin/python

import re

line = "Cats are smarter than dogs";

searchObj = re.search(r'(.*) are (.*?) .*', line, re.M|re.I)

if searchObj:

print "searchObj.group() : ", searchObj.group()

print "searchObj.group(1) : ", searchObj.group(1)

print "searchObj.group(2) : ", searchObj.group(2)

else:

print "Nothing found!!"

searchObj.group() : Cats are smarter than dogs

searchObj.group(1) : Cats
searchObj.group(2) : smarter

This method returns entire match (or specific subgroup num)

2
groups()

This method returns all matching subgroups in a tuple (empty if there

weren't any)

Example

When the above code is executed, it produces following result −

Matching Versus Searching
Python offers two different primitive operations based on regular

expressions: match checks for a match only at the beginning of the string,

while searchchecks for a match anywhere in the string (this is what Perl

does by default).

Computer Programming using Python: by Ravinder Sheoran

50

#!/usr/bin/python

import re

line = "Cats are smarter than dogs";

matchObj = re.match(r'dogs', line, re.M|re.I)

if matchObj:

print "match --> matchObj.group() : ", matchObj.group()

else:

print "No match!!"

searchObj = re.search(r'dogs', line, re.M|re.I)

if searchObj:

print "search --> searchObj.group() : ", searchObj.group()

else:

print "Nothing found!!"

No match!!

search --> matchObj.group() : dogs

re.sub(pattern, repl, string, max=0)

Example

When the above code is executed, it produces the following result −

Search and Replace
One of the most important re methods that use regular expressions is sub.

Syntax

This method replaces all occurrences of the RE pattern in string with repl,

substituting all occurrences unless max provided. This method returns

modified string.

Computer Programming using Python: by Ravinder Sheoran

51

#!/usr/bin/python

import re

phone = "2004-959-559 # This is Phone Number"

Delete Python-style comments

num = re.sub(r'#.*$', "", phone)

print "Phone Num : ", num

Remove anything other than digits

num = re.sub(r'\D', "", phone)

print "Phone Num : ", num

Phone Num : 2004-959-559

Phone Num : 2004959559

Example

When the above code is executed, it produces the following result −

Regular Expression Modifiers: Option Flags
Regular expression literals may include an optional modifier to control

various aspects of matching. The modifiers are specified as an optional flag.

You can provide multiple modifiers using exclusive OR (|), as shown

previously and may be represented by one of these −

Sr.No. Modifier & Description

1
re.I

Performs case-insensitive matching.

2
re.L

Computer Programming using Python: by Ravinder Sheoran

52

Interprets words according to the current locale. This interpretation

affects the alphabetic group (\w and \W), as well as word boundary

behavior(\b and \B).

3
re.M

Makes $ match the end of a line (not just the end of the string) and

makes ^ match the start of any line (not just the start of the string).

4
re.S

Makes a period (dot) match any character, including a newline.

5
re.U

Interprets letters according to the Unicode character set. This flag

affects the behavior of \w, \W, \b, \B.

6
re.X

Permits "cuter" regular expression syntax. It ignores whitespace (except

inside a set [] or when escaped by a backslash) and treats unescaped #

as a comment marker.

Regular Expression Patterns
Except for control characters, (+ ? . * ^ $ () [] { } | \), all characters

match themselves. You can escape a control character by preceding it with

a backslash.

Following table lists the regular expression syntax that is available in Python

−

Sr.No. Pattern & Description

1
^

Matches beginning of line.

Computer Programming using Python: by Ravinder Sheoran

53

2
$

Matches end of line.

3
.

Matches any single character except newline. Using m option allows it to

match newline as well.

4
[...]

Matches any single character in brackets.

5
[^...]

Matches any single character not in brackets

6
re*

Matches 0 or more occurrences of preceding expression.

7
re+

Matches 1 or more occurrence of preceding expression.

8
re?

Matches 0 or 1 occurrence of preceding expression.

9
re{ n}

Matches exactly n number of occurrences of preceding expression.

10
re{ n,}

Matches n or more occurrences of preceding expression.

11
re{ n, m}

Computer Programming using Python: by Ravinder Sheoran

54

Matches at least n and at most m occurrences of preceding expression.

12
a| b

Matches either a or b.

13
(re)

Groups regular expressions and remembers matched text.

14
(?imx)

Temporarily toggles on i, m, or x options within a regular expression. If

in parentheses, only that area is affected.

15
(?-imx)

Temporarily toggles off i, m, or x options within a regular expression. If

in parentheses, only that area is affected.

16
(?: re)

Groups regular expressions without remembering matched text.

17
(?imx: re)

Temporarily toggles on i, m, or x options within parentheses.

18
(?-imx: re)

Temporarily toggles off i, m, or x options within parentheses.

19
(?#...)

Comment.

20
(?= re)

Specifies position using a pattern. Doesn't have a range.

Computer Programming using Python: by Ravinder Sheoran

55

21
(?! re)

Specifies position using pattern negation. Doesn't have a range.

22
(?> re)

Matches independent pattern without backtracking.

23
\w

Matches word characters.

24
\W

Matches nonword characters.

25
\s

Matches whitespace. Equivalent to [\t\n\r\f].

26
\S

Matches nonwhitespace.

27
\d

Matches digits. Equivalent to [0-9].

28
\D

Matches nondigits.

29
\A

Matches beginning of string.

30
\Z

Matches end of string. If a newline exists, it matches just before

Computer Programming using Python: by Ravinder Sheoran

56

newline.

31
\z

Matches end of string.

32
\G

Matches point where last match finished.

33
\b

Matches word boundaries when outside brackets. Matches backspace

(0x08) when inside brackets.

34
\B

Matches nonword boundaries.

35
\n, \t, etc.

Matches newlines, carriage returns, tabs, etc.

36
\1...\9

Matches nth grouped subexpression.

37
\10

Matches nth grouped subexpression if it matched already. Otherwise

refers to the octal representation of a character code.

Regular Expression Examples
Literal characters

Sr.No. Example & Description

Computer Programming using Python: by Ravinder Sheoran

57

1
python

Match "python".

Character classes
Sr.No. Example & Description

1
[Pp]ython

Match "Python" or "python"

2
rub[ye]

Match "ruby" or "rube"

3
[aeiou]

Match any one lowercase vowel

4
[0-9]

Match any digit; same as [0123456789]

5
[a-z]

Match any lowercase ASCII letter

6
[A-Z]

Match any uppercase ASCII letter

7
[a-zA-Z0-9]

Match any of the above

8
[^aeiou]

Match anything other than a lowercase vowel

Computer Programming using Python: by Ravinder Sheoran

58

9
[^0-9]

Match anything other than a digit

Special Character Classes
Sr.No. Example & Description

1
.

Match any character except newline

2
\d

Match a digit: [0-9]

3
\D

Match a nondigit: [^0-9]

4
\s

Match a whitespace character: [\t\r\n\f]

5
\S

Match nonwhitespace: [^ \t\r\n\f]

6
\w

Match a single word character: [A-Za-z0-9_]

7
\W

Match a nonword character: [^A-Za-z0-9_]

Repetition Cases
Sr.No. Example & Description

Computer Programming using Python: by Ravinder Sheoran

59

1
ruby?

Match "rub" or "ruby": the y is optional

2
ruby*

Match "rub" plus 0 or more ys

3
ruby+

Match "rub" plus 1 or more ys

4
\d{3}

Match exactly 3 digits

5
\d{3,}

Match 3 or more digits

6
\d{3,5}

Match 3, 4, or 5 digits

Nongreedy repetition
This matches the smallest number of repetitions −

Sr.No. Example & Description

1
<.*>

Greedy repetition: matches "<python>perl>"

2
<.*?>

Nongreedy: matches "<python>" in "<python>perl>"

Grouping with Parentheses

Computer Programming using Python: by Ravinder Sheoran

60

Sr.No. Example & Description

1
\D\d+

No group: + repeats \d

2
(\D\d)+

Grouped: + repeats \D\d pair

3
([Pp]ython(,)?)+

Match "Python", "Python, python, python", etc.

Backreferences
This matches a previously matched group again −

Sr.No. Example & Description

1
([Pp])ython&\1ails

Match python&pails or Python&Pails

2
(['"])[^\1]*\1

Single or double-quoted string. \1 matches whatever the 1st group

matched. \2 matches whatever the 2nd group matched, etc.

Alternatives
Sr.No. Example & Description

1
python|perl

Match "python" or "perl"

2
rub(y|le))

Computer Programming using Python: by Ravinder Sheoran

61

Match "ruby" or "ruble"

3
Python(!+|\?)

"Python" followed by one or more ! or one ?

Anchors
This needs to specify match position.

Sr.No. Example & Description

1
^Python

Match "Python" at the start of a string or internal line

2
Python$

Match "Python" at the end of a string or line

3
\APython

Match "Python" at the start of a string

4
Python\Z

Match "Python" at the end of a string

5
\bPython\b

Match "Python" at a word boundary

6
\brub\B

\B is nonword boundary: match "rub" in "rube" and "ruby" but not alone

7
Python(?=!)

Match "Python", if followed by an exclamation point.

Computer Programming using Python: by Ravinder Sheoran

62

8
Python(?!!)

Match "Python", if not followed by an exclamation point.

Special Syntax with Parentheses
Sr.No. Example & Description

1
R(?#comment)

Matches "R". All the rest is a comment

2
R(?i)uby

Case-insensitive while matching "uby"

3
R(?i:uby)

Same as above

4
rub(?:y|le))

Group only without creating \1 backreference

Exception Handling

Python provides two very important features to handle any unexpected

error in your Python programs and to add debugging capabilities in them −

• Exception Handling − This would be covered in this tutorial. Here is a list

standard Exceptions available in Python: Standard Exceptions.

• Assertions − This would be covered in Assertions in Pythontutorial.

List of Standard Exceptions −

Sr.No. Exception Name & Description

https://www.tutorialspoint.com/python/standard_exceptions.htm
https://www.tutorialspoint.com/python/assertions_in_python.htm

Computer Programming using Python: by Ravinder Sheoran

63

1
Exception

Base class for all exceptions

2
StopIteration

Raised when the next() method of an iterator does not point to any

object.

3
SystemExit

Raised by the sys.exit() function.

4
StandardError

Base class for all built-in exceptions except StopIteration and

SystemExit.

5
ArithmeticError

Base class for all errors that occur for numeric calculation.

6
OverflowError

Raised when a calculation exceeds maximum limit for a numeric type.

7
FloatingPointError

Raised when a floating point calculation fails.

8
ZeroDivisionError

Raised when division or modulo by zero takes place for all numeric

types.

9
AssertionError

Raised in case of failure of the Assert statement.

Computer Programming using Python: by Ravinder Sheoran

64

10
AttributeError

Raised in case of failure of attribute reference or assignment.

11
EOFError

Raised when there is no input from either the raw_input() or input()

function and the end of file is reached.

12
ImportError

Raised when an import statement fails.

13
KeyboardInterrupt

Raised when the user interrupts program execution, usually by pressing

Ctrl+c.

14
LookupError

Base class for all lookup errors.

15
IndexError

Raised when an index is not found in a sequence.

16
KeyError

Raised when the specified key is not found in the dictionary.

17
NameError

Raised when an identifier is not found in the local or global namespace.

18
UnboundLocalError

Raised when trying to access a local variable in a function or method but

no value has been assigned to it.

Computer Programming using Python: by Ravinder Sheoran

65

19
EnvironmentError

Base class for all exceptions that occur outside the Python environment.

20
IOError

Raised when an input/ output operation fails, such as the print

statement or the open() function when trying to open a file that does not

exist.

21
IOError

Raised for operating system-related errors.

22
SyntaxError

Raised when there is an error in Python syntax.

23
IndentationError

Raised when indentation is not specified properly.

24
SystemError

Raised when the interpreter finds an internal problem, but when this

error is encountered the Python interpreter does not exit.

25
SystemExit

Raised when Python interpreter is quit by using the sys.exit() function. If

not handled in the code, causes the interpreter to exit.

26
TypeError

Raised when an operation or function is attempted that is invalid for the

specified data type.

27
ValueError

Computer Programming using Python: by Ravinder Sheoran

66

assert Expression[, Arguments]

Raised when the built-in function for a data type has the valid type of

arguments, but the arguments have invalid values specified.

28
RuntimeError

Raised when a generated error does not fall into any category.

29
NotImplementedError

Raised when an abstract method that needs to be implemented in an

inherited class is not actually implemented.

Assertions in Python

An assertion is a sanity-check that you can turn on or turn off when you are

done with your testing of the program.

The easiest way to think of an assertion is to liken it to a raise-if statement

(or to be more accurate, a raise-if-not statement). An expression is tested,

and if the result comes up false, an exception is raised.

Assertions are carried out by the assert statement, the newest keyword to

Python, introduced in version 1.5.

Programmers often place assertions at the start of a function to check for

valid input, and after a function call to check for valid output.

The assert Statement

When it encounters an assert statement, Python evaluates the

accompanying expression, which is hopefully true. If the expression is false,

Python raises an AssertionError exception.

The syntax for assert is −

If the assertion fails, Python uses ArgumentExpression as the argument for

the AssertionError. AssertionError exceptions can be caught and handled

like any other exception using the try-except statement, but if not handled,

they will terminate the program and produce a traceback.

Example

Computer Programming using Python: by Ravinder Sheoran

67

#!/usr/bin/python

def KelvinToFahrenheit(Temperature):

assert (Temperature >= 0),"Colder than absolute zero!"

return ((Temperature-273)*1.8)+32

print KelvinToFahrenheit(273)

print int(KelvinToFahrenheit(505.78))

print KelvinToFahrenheit(-5)

32.0

451

Traceback (most recent call last):
File "test.py", line 9, in <module>
print KelvinToFahrenheit(-5)

File "test.py", line 4, in KelvinToFahrenheit

assert (Temperature >= 0),"Colder than absolute zero!"
AssertionError: Colder than absolute zero!

Here is a function that converts a temperature from degrees Kelvin to

degrees Fahrenheit. Since zero degrees Kelvin is as cold as it gets, the

function bails out if it sees a negative temperature −

When the above code is executed, it produces the following result −

What is Exception?
An exception is an event, which occurs during the execution of a program

that disrupts the normal flow of the program's instructions. In general,

when a Python script encounters a situation that it cannot cope with, it

raises an exception. An exception is a Python object that represents an

error.

When a Python script raises an exception, it must either handle the

exception immediately otherwise it terminates and quits.

Handling an exception
If you have some suspicious code that may raise an exception, you can

defend your program by placing the suspicious code in a try: block. After

the try: block, include an except: statement, followed by a block of code

which handles the problem as elegantly as possible.

Computer Programming using Python: by Ravinder Sheoran

68

try:

You do your operations here;

......................

except ExceptionI:

If there is ExceptionI, then execute this block.
except ExceptionII:

If there is ExceptionII, then execute this block.

......................

else:

If there is no exception then execute this block.

#!/usr/bin/python

try:

fh = open("testfile", "w")

fh.write("This is my test file for exception handling!!")

except IOError:

print "Error: can\'t find file or read data"

else:

print "Written content in the file successfully"

Syntax

Here is simple syntax of try....except...else blocks −

Here are few important points about the above-mentioned syntax −

• A single try statement can have multiple except statements. This is useful when

the try block contains statements that may throw different types of exceptions.

• You can also provide a generic except clause, which handles any exception.

• After the except clause(s), you can include an else-clause. The code in the else-

block executes if the code in the try: block does not raise an exception.

• The else-block is a good place for code that does not need the try: block's

protection.

Example

This example opens a file, writes content in the, file and comes out

gracefully because there is no problem at all −

Computer Programming using Python: by Ravinder Sheoran

69

Written content in the file successfully

#!/usr/bin/python

try:

fh = open("testfile", "r")

fh.write("This is my test file for exception handling!!")

except IOError:

print "Error: can\'t find file or read data"

else:

print "Written content in the file successfully"

Error: can't find file or read data

try:

You do your operations here;

......................

except:

If there is any exception, then execute this block.
......................

else:

If there is no exception then execute this block.

This produces the following result −

Example

This example tries to open a file where you do not have write permission,

so it raises an exception −

This produces the following result −

The except Clause with No Exceptions
You can also use the except statement with no exceptions defined as

follows −

This kind of a try-except statement catches all the exceptions that occur.

Using this kind of try-except statement is not considered a good

programming practice though, because it catches all exceptions but does

fh.close()

Computer Programming using Python: by Ravinder Sheoran

70

try:

You do your operations here;

......................

except(Exception1[, Exception2[,...ExceptionN]]]):

If there is any exception from the given exception list,

then execute this block.

......................

else:

If there is no exception then execute this block.

try:

You do your operations here;

......................

Due to any exception, this may be skipped.

finally:

This would always be executed.

......................

not make the programmer identify the root cause of the problem that may

occur.

The except Clause with Multiple Exceptions
You can also use the same except statement to handle multiple exceptions

as follows −

The try-finally Clause
You can use a finally: block along with a try: block. The finally block is a

place to put any code that must execute, whether the try-block raised an

exception or not. The syntax of the try-finally statement is this −

You cannot use else clause as well along with a finally clause.

Example

Computer Programming using Python: by Ravinder Sheoran

71

Error: can't find file or read data

#!/usr/bin/python

try:

fh = open("testfile", "w")

try:

fh.write("This is my test file for exception handling!!")

finally:

print "Going to close the file"

fh.close()

except IOError:

print "Error: can\'t find file or read data"

If you do not have permission to open the file in writing mode, then this will

produce the following result −

Same example can be written more cleanly as follows −

When an exception is thrown in the try block, the execution immediately

passes to the finally block. After all the statements in the finally block are

executed, the exception is raised again and is handled in

#!/usr/bin/python

try:

fh = open("testfile", "w")

fh.write("This is my test file for exception handling!!")

finally:

print "Error: can\'t find file or read data"

Computer Programming using Python: by Ravinder Sheoran

72

try:

You do your operations here;

......................

except ExceptionType, Argument:

You can print value of Argument here...

#!/usr/bin/python

Define a function here.

def temp_convert(var):

try:

return int(var)

the exceptstatements if present in the next higher layer of the try-

except statement.

Argument of an Exception
An exception can have an argument, which is a value that gives additional

information about the problem. The contents of the argument vary by

exception. You capture an exception's argument by supplying a variable in

the except clause as follows −

If you write the code to handle a single exception, you can have a variable

follow the name of the exception in the except statement. If you are

trapping multiple exceptions, you can have a variable follow the tuple of the

exception.

This variable receives the value of the exception mostly containing the

cause of the exception. The variable can receive a single value or multiple

values in the form of a tuple. This tuple usually contains the error string,

the error number, and an error location.

Example

Following is an example for a single exception −

Computer Programming using Python: by Ravinder Sheoran

73

The argument does not contain numbers

invalid literal for int() with base 10: 'xyz'

raise [Exception [, args [, traceback]]]

def functionName(level):

if level < 1:

raise "Invalid level!", level

The code below to this would not be executed

if we raise the exception

This produces the following result −

Raising an Exceptions
You can raise exceptions in several ways by using the raise statement. The

general syntax for the raise statement is as follows.

Syntax

Here, Exception is the type of exception (for example, NameError)

and argument is a value for the exception argument. The argument is

optional; if not supplied, the exception argument is None.

The final argument, traceback, is also optional (and rarely used in practice),

and if present, is the traceback object used for the exception.

Example

An exception can be a string, a class or an object. Most of the exceptions

that the Python core raises are classes, with an argument that is an

instance of the class. Defining new exceptions is quite easy and can be done

as follows −

except ValueError, Argument:

print "The argument does not contain numbers\n", Argument

Call above function here.

temp_convert("xyz");

Computer Programming using Python: by Ravinder Sheoran

74

try:

Business Logic here...

except "Invalid level!":

Exception handling here...

else:

Rest of the code here...

class Networkerror(RuntimeError):

def init (self, arg):

self.args = arg

try:

raise Networkerror("Bad hostname")

except Networkerror,e:

print e.args

Note: In order to catch an exception, an "except" clause must refer to the

same exception thrown either class object or simple string. For example, to

capture above exception, we must write the except clause as follows −

User-Defined Exceptions
Python also allows you to create your own exceptions by deriving classes

from the standard built-in exceptions.

Here is an example related to RuntimeError. Here, a class is created that is

subclassed from RuntimeError. This is useful when you need to display

more specific information when an exception is caught.

In the try block, the user-defined exception is raised and caught in the

except block. The variable e is used to create an instance of the

class Networkerror.

So once you defined above class, you can raise the exception as follows −

Computer Programming using Python: by Ravinder Sheoran

75

Integer number
num = 100

print(num)
print("Data Type of variable num is", type(num))

Python Data Types

Data type defines the type of the variable, whether it is an integer variable, string
variable, tuple, dictionary, list etc. In this guide, you will learn about the data
types and their usage in Python.

Python data types

Python data types are divided in two categories, mutable data types and
immutable data types.

Immutable Data types in Python
1. Numeric
2. String
3. Tuple

Mutable Data types in Python
1. List
2. Dictionary

3. Set

1. Numeric Data Type in Python

Integer – In Python 3, there is no upper bound on the integer number which
means we can have the value as large as our system memory allows.

Output:

Computer Programming using Python: by Ravinder Sheoran

76

float number

fnum = 34.45
print(fnum)
print("Data Type of variable fnum is", type(fnum))

complex number
cnum = 3 + 4j

print(cnum)
print("Data Type of variable cnum is", type(cnum))

integer equivalent of binary number 101
num = 0b101
print(num)

Long – Long data type is deprecated in Python 3 because there is no need for it,
since the integer has no upper limit, there is no point in having a data type that
allows larger upper limit than integers.

Float – Values with decimal points are the float values, there is no need to
specify the data type in Python. It is automatically inferred based on the value we
are assigning to a variable. For example here fnum is a float data type.

Output:

Complex Number – Numbers with real and imaginary parts are known as
complex numbers. Unlike other programming language such as Java, Python is
able to identify these complex numbers with the values. In the following example
when we print the type of the variable cnum, it prints as complex number.

Binary, Octal and Hexadecimal numbers

In Python we can print decimal equivalent of binary, octal and hexadecimal
numbers using the prefixes.
0b(zero + ‘b’) and 0B(zero + ‘B’) – Binary Number
0o(zero + ‘o’) and 0O(zero + ‘O’) – Octal Number
0x(zero + ‘x’) and 0X(zero + ‘X’) – Hexadecimal Number

Computer Programming using Python: by Ravinder Sheoran

77

Python program to print strings and type

s = "This is a String"

s2 = 'This is also a String'

displaying string s and its type
print(s)
print(type(s))

displaying string s2 and its type

print(s2)
print(type(s2))

tuple of integers

t1 = (1, 2, 3, 4, 5)
prints entire tuple
print(t1)

tuple of strings

t2 = ("hi", "hello", "bye")
loop through tuple elements

for s in t2:

2. Python Data Type – String

String is a sequence of characters in Python. The data type of String in Python is
called “str”.

Strings in Python are either enclosed with single quotes or double quotes. In the
following example we have demonstrated two strings one with the double quotes
and other string s2 with the single quotes. To read more about strings, refer this
article: Python Strings.

3. Python Data Type – Tuple

Tuple is immutable data type in Python which means it cannot be changed. It is
an ordered collection of elements enclosed in round brackets and separated by
commas. To read more about tuple, refer this tutorial: Python tuple.

integer equivalent of Octal number 32
num2 = 0o32
print(num2)

integer equivalent of Hexadecimal number FF
num3 = 0xFF

print(num3)

https://beginnersbook.com/2018/02/python-strings/
https://beginnersbook.com/2018/02/python-tuple/

Computer Programming using Python: by Ravinder Sheoran

78

list of integers
lis1 = (1, 2, 3, 4, 5)
prints entire list
print(lis1)

list of strings

lis2 = ("Apple", "Orange", "Banana")
loop through tuple elements

for x in lis2:

print (x)

List of mixed type elements
lis3 = (20, "Chaitanya", 15, "BeginnersBook")

'''
Print a specific element in list

indexes start with zero
'''
print("Element at index 3 is:",lis3[3])

4. Python Data Type – List

List is similar to tuple, it is also an ordered collection of elements, however list is
a mutable data type which means it can be changed unlike tuple which is an
immutable data type.

A list is enclosed with square brackets and elements are separated by commas.
To read more about Lists, refer this guide: Python Lists

5. Python Data Type – Dictionary

Dictionary is a collection of key and value pairs. A dictionary doesn’t allow
duplicate keys but the values can be duplicate. It is an ordered, indexed and
mutable collection of elements. To read more about it refer: Python dictionary.

print (s)

tuple of mixed type elements
t3 = (2, "Lucy", 45, "Steve")

'''
Print a specific element

indexes start with zero
'''
print(t3[2])

https://beginnersbook.com/2018/02/python-list/
https://beginnersbook.com/2019/03/python-dictionary/

Computer Programming using Python: by Ravinder Sheoran

79

Dictionary example

dict = {1:"Chaitanya","lastname":"Singh", "age":31}

prints the value where key value is 1
print(dict[1])

prints the value where key value is "lastname"
print(dict["lastname"])
prints the value where key value is "age"
print(dict["age"])

Set Example

myset = {"hi", 2, "bye", "Hello World"}

loop through set

for a in myset:
print(a)

checking whether 2 exists in myset
print(2 in myset)

adding new element

myset.add(99)
print(myset)

The keys in a dictionary doesn’t necessarily to be a single data type, as you can
see in the following example that we have 1 integer key and two string keys.

6. Python Data Type – Set

A set is an unordered and unindexed collection of items. This means when we
print the elements of a set they will appear in the random order and we cannot
access the elements of set based on indexes because it is unindexed.

Elements of set are separated by commas and enclosed in curly braces. Lets
take an example to understand the sets in Python.

Python If Statement explained with

examples

BY CHAITANYA SINGH | FILED UNDER: PYTHON TUTORIAL

https://beginnersbook.com/2019/03/python-sets/
https://beginnersbook.com/category/python-tutorial/

Computer Programming using Python: by Ravinder Sheoran

80

if condition:
block_of_code

flag = True
if flag==True:

print("Welcome")

print("To")
print("BeginnersBook.com")

Welcome
To
BeginnersBook.com

If statements are control flow statements which helps us to run a particular code
only when a certain condition is satisfied. For example, you want to print a
message on the screen only when a condition is true then you can use if
statement to accomplish this in programming. In this guide, we will learn how to
use if statements in Python programming with the help of examples.

There are other control flow statements available in Python such as if..else,
if..elif..else,
nested if etc. However in this guide, we will only cover the if statements, other
control statements are covered in separate tutorials.

Syntax of If statement in Python

The syntax of if statement in Python is pretty simple.

If statement flow diagram

Python – If statement Example

Output:

Computer Programming using Python: by Ravinder Sheoran

81

flag = True
if flag:

print("Welcome")
print("To")
print("BeginnersBook.com")

flag = False
if flag:

print("You Guys")
print("are")

print("Awesome")

num = 100

if num < 200:
print("num is less than 200")

In the above example we are checking the value of flag variable and if the value
is True then we are executing few print statements. The important point to note
here is that even if we do not compare the value of flag with the ‘True’ and simply
put ‘flag’ in place of condition, the code would run just fine so the better way to
write the above code would be:

By seeing this we can understand how if statement works. The output of the
condition would either be true or false. If the outcome of condition is true then the
statements inside body of ‘if’ executes, however if the outcome of condition is
false then the statements inside ‘if’ are skipped. Lets take another example to
understand this:

The output of this code is none, it does not print anything because the outcome
of condition is ‘false’.

Python if example without boolean variables

In the above examples, we have used the boolean variables in place of
conditions. However we can use any variables in our conditions. For example:

Output:

num is less than 200

Python If else Statement Example

In the last tutorial we learned how to use if statements in Python. In this guide,
we will learn another control statement ‘if..else’.

https://beginnersbook.com/2018/01/python-if-statement-example/

Computer Programming using Python: by Ravinder Sheoran

82

if condition:
block_of_code_1

else:

block_of_code_2

num = 22

if num % 2 == 0:

print("Even Number")
else:

print("Odd Number")

We use if statements when we need to execute a certain block of Python code
when a particular condition is true. If..else statements are like extension of ‘if’
statements, with the help of if..else we can execute certain statements if
condition is true and a different set of statements if condition is false. For
example, you want to print ‘even number’ if the number is even and ‘odd number’
if the number is not even, we can accomplish this with the help of if..else
statement.

Python – Syntax of if..else statement

block_of_code_1: This would execute if the given condition is true
block_of_code_2: This would execute if the given condition is false

If..else flow control

If-else example in Python

Output:

Even Number

Computer Programming using Python: by Ravinder Sheoran

83

if condition:
block_of_code_1

elif condition_2:
block_of_code_2

elif condition_3:
block_of_code_3

..

..

..
else:

block_of_code_n

num = 1122

if 9 < num < 99:

print("Two digit number")
elif 99 < num < 999:

print("Three digit number")
elif 999 < num < 9999:

print("Four digit number")
else:

print("number is <= 9 or >= 9999")

Python If elif else statement example

In the previous tutorials we have seen if statement and if..else statement. In this
tutorial, we will learn if elif else statement in Python. The if..elif..else statement
is used when we need to check multiple conditions.

Syntax of if elif else statement in Python

This way we are checking multiple conditions.

Notes:
1. There can be multiple ‘elif’ blocks, however there is only ‘else’ block is allowed.

2. Out of all these blocks only one block_of_code gets executed. If the condition
is true then the code inside ‘if’ gets executed, if condition is false then the next
condition(associated with elif) is evaluated and so on. If none of the conditions is
true then the code inside ‘else’ gets executed.

Python – if..elif..else statement example

In this example, we are checking multiple conditions using if..elif..else
statement.

https://beginnersbook.com/2018/01/python-if-statement-example/
https://beginnersbook.com/2018/01/python-if-else-statement/

Computer Programming using Python: by Ravinder Sheoran

84

num = -99
if num > 0:

print("Positive Number")
else:

print("Negative Number")

#nested if
if -99<=num:

print("Two digit Negative Number")

Negative Number

Two digit Negative Number

for <variable> in <sequence>:

body_of_loop that has set of statements
which requires repeated execution

Python Nested If else statement

In the previous tutorials, we have covered the if statement, if..else
statement and if..elif..else statement. In this tutorial, we will learn the nesting of
these control statements.

When there is an if statement (or if..else or if..elif..else) is present inside another
if statement (or if..else or if..elif..else) then this is calling the nesting of control
statements.

Nested if..else statement example

Here we have a if statement inside another if..else statement block. Nesting
control statements makes us to check multiple conditions.

Output:

Python for Loop explained with examples

A loop is a used for iterating over a set of statements repeatedly. In Python we
have three types of loops for, while and do-while. In this guide, we will learn for
loop and the other two loops are covered in the separate tutorials.

Syntax of For loop in Python

https://beginnersbook.com/2018/01/python-if-statement-example/
https://beginnersbook.com/2018/01/python-if-else-statement/
https://beginnersbook.com/2018/01/python-if-else-statement/
https://beginnersbook.com/2018/01/python-if-elif-else/

Computer Programming using Python: by Ravinder Sheoran

85

Program to print squares of all numbers present in a list

List of integer numbers
numbers = [1, 2, 4, 6, 11, 20]

variable to store the square of each num temporary
sq = 0

iterating over the given list

for val in numbers:
calculating square of each number
sq = val * val

displaying the squares
print(sq)

1

4

16

36
121

400

Here <variable> is a variable that is used for iterating over a <sequence>. On
every iteration it takes the next value from <sequence> until the end of
sequence is reached.

Lets take few examples of for loop to understand the usage.

Python – For loop example

The following example shows the use of for loop to iterate over a list of numbers.
In the body of for loop we are calculating the square of each number present in
list and displaying the same.

Output:

Function range()

In the above example, we have iterated over a list using for loop. However we
can also use a range() function in for loop to iterate over numbers defined by
range().

range(n): generates a set of whole numbers starting from 0 to (n-1).
For example:
range(8) is equivalent to [0, 1, 2, 3, 4, 5, 6, 7]

Computer Programming using Python: by Ravinder Sheoran

86

Program to print the sum of first 5 natural numbers

variable to store the sum

sum = 0

iterating over natural numbers using range()
for val in range(1, 6):

calculating sum
sum = sum + val

displaying sum of first 5 natural numbers
print(sum)

for val in range(5):

print(val)

else:
print("The loop has completed execution")

range(start, stop): generates a set of whole numbers starting from start to stop-1.
For example:
range(5, 9) is equivalent to [5, 6, 7, 8]

range(start, stop, step_size): The default step_size is 1 which is why when we
didn’t specify the step_size, the numbers generated are having difference of 1.
However by specifying step_size we can generate numbers having the difference
of step_size.
For example:

range(1, 10, 2) is equivalent to [1, 3, 5, 7, 9]

Lets use the range() function in for loop:

Python for loop example using range() function

Here we are using range() function to calculate and display the sum of first 5
natural numbers.

Output:

15

For loop with else block

Unlike Java, In Python we can have an optional ‘else’ block associated with the
loop. The ‘else’ block executes only when the loop has completed all the
iterations. Lets take an example:

Output:

https://beginnersbook.com/2015/03/for-loop-in-java-with-example/

Computer Programming using Python: by Ravinder Sheoran

87

for num1 in range(3):

for num2 in range(10, 14):

print(num1, ",", num2)

0 , 10

0 , 11
0 , 12

0 , 13

1 , 10
1 , 11

1 , 12
1 , 13

2 , 10
2 , 11

2 , 12

2 , 13

while condition:
#body_of_while

Note: The else block only executes when the loop is finished.

Nested For loop in Python

When a for loop is present inside another for loop then it is called a nested for
loop. Lets take an example of nested for loop.

Output:

Python While Loop

While loop is used to iterate over a block of code repeatedly until a given
condition returns false. In the last tutorial, we have seen for loop in Python, which
is also used for the same purpose. The main difference is that we use while
loop when we are not certain of the number of times the loop requires execution,
on the other hand when we exactly know how many times we need to run the
loop, we use for loop.

Syntax of while loop

0

1

2
3

4
The loop has completed execution

https://beginnersbook.com/2018/01/python-for-loop/

Computer Programming using Python: by Ravinder Sheoran

88

num = 1

loop will repeat itself as long as
num < 10 remains true

while num < 10:
print(num)
#incrementing the value of num

num = num + 3

1

4

7

while True:

print("hello")

The body_of_while is set of Python statements which requires repeated
execution. These set of statements execute repeatedly until the given condition
returns false.

Flow of while loop

1. First the given condition is checked, if the condition returns false, the loop is
terminated and the control jumps to the next statement in the program after the
loop.
2. If the condition returns true, the set of statements inside loop are executed and
then the control jumps to the beginning of the loop for next iteration.

These two steps happen repeatedly as long as the condition specified in while
loop remains true.

Python – While loop example

Here is an example of while loop. In this example, we have a variable num and we
are displaying the value of num in a loop, the loop has a increment operation
where we are increasing the value of num. This is very important step, the while
loop must have a increment or decrement operation, else the loop will run
indefinitely, we will cover this later in infinite while loop.

Output:

Infinite while loop

Example 1:
This will print the word ‘hello’ indefinitely because the condition will always be
true.

Computer Programming using Python: by Ravinder Sheoran

89

num = 1
while num<5:

print(num)

i = 1

j = 5

while i < 4:

while j < 8:
print(i, ",", j)
j = j + 1
i = i + 1

1 , 5

2 , 6
3 , 7

num = 10 while
num > 6:

print(num)
num = num-1

else:

print("loop is finished")

10

9

8
7

loop is finished

Example 2:

This will print ‘1’ indefinitely because inside loop we are not updating the value of
num, so the value of num will always remain 1 and the condition num < 5 will
always return true.

Nested while loop in Python

When a while loop is present inside another while loop then it is called nested
while loop. Lets take an example to understand this concept.

Output:

Python – while loop with else block

We can have a ‘else’ block associated with while loop. The ‘else’ block is
optional. It executes only after the loop finished execution.

Output:

Computer Programming using Python: by Ravinder Sheoran

90

Python break Statement

The break statement is used to terminate the loop when a certain condition is
met. We already learned in previous tutorials (for loop and while loop) that a loop
is used to iterate a set of statements repeatedly as long as the loop
condition returns true. The break statement is generally used inside a loop
along with a if statement so that when a particular condition (defined in if
statement) returns true, the break statement is encountered and the loop
terminates.

For example, lets say we are searching an element in a list, so for that we are
running a loop starting from the first element of the list to the last element of the
list. Using break statement, we can terminate the loop as soon as the element is
found because why run the loop unnecessary till the end of list when our element
is found. We can achieve this with the help of break statement (we will see this
example programmatically in the example section below).

Syntax of break statement in Python

The syntax of break statement in Python is similar to what we have seen
in Java.

break

Flow diagram of break

Example of break statement

In this example, we are searching a number ’88’ in the given list of numbers. The
requirement is to display all the numbers till the number ’88’ is found and when it
is found, terminate the loop and do not display the rest of the numbers.

https://beginnersbook.com/2018/01/python-for-loop/
https://beginnersbook.com/2018/01/python-while-loop/
https://beginnersbook.com/2018/01/python-if-statement-example/
https://beginnersbook.com/2017/08/java-break-statement/

Computer Programming using Python: by Ravinder Sheoran

91

11

9

88
The number 88 is found

Terminating the loop

Output:

Note: You would always want to use the break statement with a if statement so
that only when the condition associated with ‘if’ is true then only break is
encountered. If you do not use it with ‘if’ statement then the break statement
would be encountered in the first iteration of loop and the loop would always
terminate on the first iteration.

Python Continue Statement

The continue statement is used inside a loop to skip the rest of the statements
in the body of loop for the current iteration and jump to the beginning of the loop
for next iteration. The break and continue statements are used to alter the flow of
loop, break terminates the loop when a condition is met and continue skip the
current iteration.

Syntax of continue statement in Python

The syntax of continue statement in Python is similar to what we have seen
in Java(except the semicolon)

continue

Flow diagram of continue

program to display all the elements before number 88
for num in [11, 9, 88, 10, 90, 3, 19]:

print(num)
if(num==88):

print("The number 88 is found")
print("Terminating the loop")

break

https://beginnersbook.com/2018/01/python-break-statement/
https://beginnersbook.com/2017/08/java-continue-statement/

Computer Programming using Python: by Ravinder Sheoran

92

program to display only odd numbers
for num in [20, 11, 9, 66, 4, 89, 44]:

Skipping the iteration when number is even
if num%2 == 0:

continue
This statement will be skipped for all even numbers
print(num)

11

9

89

Example of continue statement

Lets say we have a list of numbers and we want to print only the odd numbers
out of that list. We can do this by using continue statement.
We are skipping the print statement inside loop by using continue statement
when the number is even, this way all the even numbers are skipped and the
print statement executed for all the odd numbers.

Output:

Python pass Statement

The pass statement acts as a placeholder and usually used when there is no
need of code but a statement is still required to make a code syntactically
correct. For example we want to declare a function in our code but we want to
implement that function in future, which means we are not yet ready to write the
body of the function. In this case we cannot leave the body of function empty as
this would raise error because it is syntactically incorrect, in such cases we can
use pass statement which does nothing but makes the code syntactically
correct.

Computer Programming using Python: by Ravinder Sheoran

93

for num in [20, 11, 9, 66, 4, 89, 44]:

if num%2 == 0:
pass

else:
print(num)

11

9

89

def f(arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

Pass statement vs comment

You may be wondering that a python comment works similar to the pass
statement as it does nothing so we can use comment in place of pass statement.
Well, it is not the case, a comment is not a placeholder and it is completely
ignored by the Python interpreter while on the other hand pass is not ignored by
interpreter, it says the interpreter to do nothing.

Python pass statement example

If the number is even we are doing nothing and if it is odd then we are displaying
the number.

Output:

Other examples:

A function that does nothing(yet), may be implemented in future.

A class that does not have any methods(yet), may have methods in future
implementation.

Reference

Python docs – pass statement

https://beginnersbook.com/2018/01/python-comments/
https://docs.python.org/3/reference/simple_stmts.html#pass

Computer Programming using Python: by Ravinder Sheoran

94

def function_name(function_parameters):

function_body # Set of Python statements
return # optional return statement

when function doesn't return anything

function_name(parameters)

when function returns something

variable is to store the returned value

Python Functions

In this guide, we will learn about functions in Python. A function is a block of
code that contains one or more Python statements and used for performing a
specific task.

Why use function in Python?

As I mentioned above, a function is a block of code that performs a specific task.
Lets discuss what we can achieve in Python by using functions in our code:
1. Code re-usability: Lets say we are writing an application in Python where we
need to perform a specific task in several places of our code, assume that we
need to write 10 lines of code to do that specific task. It would be better to write
those 10 lines of code in a function and just call the function wherever needed,
because writing those 10 lines every time you perform that task is tedious, it
would make your code lengthy, less-readable and increase the chances of
human errors.

2. Improves Readability: By using functions for frequent tasks you make your
code structured and readable. It would be easier for anyone to look at the code
and be able to understand the flow and purpose of the code.

3. Avoid redundancy: When you no longer repeat the same lines of code
throughout the code and use functions in places of those, you actually avoiding
the redundancy that you may have created by not using functions.

Syntax of functions in Python

Function declaration:

Calling the function:

OR

Computer Programming using Python: by Ravinder Sheoran

95

def add(num1, num2):

return num1 + num2

sum1 = add(100, 200)

sum2 = add(8, 9)
print(sum1)

print(sum2)

300

17

default argument for second parameter
def add(num1, num2=1):

return num1 + num2

sum1 = add(100, 200)

sum2 = add(8) # used default argument for second param
sum3 = add(100) # used default argument for second param
print(sum1)

print(sum2)
print(sum3)

300

9
101

variable = function_name(parameters)

Python Function example

Here we have a function add() that adds two numbers passed to it as parameters.
Later after function declaration we are calling the function twice in our program to
perform the addition.

Output:

Default arguments in Function

Now that we know how to declare and call a function, lets see how can we use
the default arguments. By using default arguments we can avoid the errors that
may arise while calling a function without passing all the parameters. Lets take
an example to understand this:

In this example we have provided the default argument for the second
parameter, this default argument would be used when we do not provide the
second parameter while calling this function.

Output:

Computer Programming using Python: by Ravinder Sheoran

96

Example of recursion in Python to

find the factorial of a given number

def factorial(num):

"""This function calls itself to find

the factorial of a number"""

if num == 1:

return 1
else:

return (num * factorial(num - 1))

num = 5

print("Factorial of", num, "is: ", factorial(num))

Types of functions

There are two types of functions in Python:
1. Built-in functions: These functions are predefined in Python and we need not
to declare these functions before calling them. We can freely invoke them as and
when needed.
2. User defined functions: The functions which we create in our code are user-
defined functions. The add() function that we have created in above examples is
a user-defined function.

We will cover more about these function types in the separate guides.

Python Recursion

A function is said to be a recursive if it calls itself. For example, lets say we have
a function abc()and in the body of abc() there is a call to the abc().

Python example of Recursion

In this example we are defining a user-defined function factorial(). This function
finds the factorial of a number by calling itself repeatedly until the base case(We
will discuss more about base case later, after this example) is reached.

Output:

Factorial of 5 is: 120

Lets see what happens in the above example:

https://beginnersbook.com/2018/01/python-functions/

Computer Programming using Python: by Ravinder Sheoran

97

if num == 1:

return 1

Note: factorial(1) is a base case for which we already know the value of factorial.
The base case is defined in the body of function with this code:

What is a base case in recursion

When working with recursion, we should define a base case for which we already
know the answer. In the above example we are finding factorial of an integer
number and we already know that the factorial of 1 is 1 so this is our base case.

Each successive recursive call to the function should bring it closer to the base
case, which is exactly what we are doing in above example.

We use base case in recursive function so that the function stops calling itself
when the base case is reached. Without the base case, the function would keep
calling itself indefinitely.

Why use recursion in programming?

We use recursion to break a big problem in small problems and those small
problems into further smaller problems and so on. At the end the solutions of all
the smaller subproblems are collectively helps in finding the solution of the big
main problem.

Advantages of recursion

Recursion makes our program:
1. Easier to write.

2. Readable – Code is easier to read and understand.
3. Reduce the lines of code – It takes less lines of code to solve a problem using
recursion.

Disadvantages of recursion

factorial(5) returns 5 * factorial(5-1)

i.e. 5 * factorial(4)

| 5*4*factorial(3)
| 5*4*3*factorial(2)

| 5*4*3*2*factorial(1)

Computer Programming using Python: by Ravinder Sheoran

98

Python program to display numbers of
different data types

int
num1 = 10
num2 = 100
print(num1+num2)

float

a = 10.5
b = 8.9
print(a-b)

complex numbers
x = 3 + 4j

y = 9 + 8j

print(y-x)

110

1.5999999999999996

(6+4j)

1. Not all problems can be solved using recursion.
2. If you don’t define the base case then the code would run indefinitely.

3. Debugging is difficult in recursive functions as the function is calling itself in a
loop and it is hard to understand which call is causing the issue.
4. Memory overhead – Call to the recursive function is not memory efficient.

Python Numbers

In this guide, we will see how to work with numbers in Python. Python supports
integers, floats and complex numbers.

An integer is a number without decimal point for example 5, 6, 10 etc.

A float is a number with decimal point for example 6.7, 6.0, 10.99 etc.

A complex number has a real and imaginary part for example 7+8j, 8+11j etc.

Example: Numbers in Python

Output:

Python example to find the class(data type) of a
number

Computer Programming using Python: by Ravinder Sheoran

99

complex

int

type() We can use the
number belongs to
number belongs to

function to find out the class of a number. An integer
class, a float number belongs to float class and a complex

class.

Output:

The isinstance() function

The isinstance() functions checks whether a number belongs to a particular class
and returns true or false based on the result.
For example:

will return true if the number
will return false if the number

is an integer number.
is not an integer number.

program to find the class of a number

int
num = 100
print("type of num: ",type(num))

float num2 =

10.99
print("type of num2: ",type(num2))

complex numbers
num3 = 3 + 4j
print("type of num3: ",type(num3))

num

num isinstance(num, int)

isinstance(num, int)

Computer Programming using Python: by Ravinder Sheoran

100

num = 100

true because num is an integer

print(isinstance(num, int))

false because num is not a float

print(isinstance(num, float))

false because num is not a complex number
print(isinstance(num, complex))

True

False
False

list of floats

num_list = [11.22, 9.9, 78.34, 12.0]

list of int, float and strings
mix_list = [1.13, 2, 5, "beginnersbook", 100, "hi"]

an empty list
nodata_list = []

Example of isinstance() function

Output:

Python List with examples

In this guide, we will discuss lists in Python. A list is a data type that allows you
to store various types data in it. List is a compound data type which means you
can have different-2 data types under a list, for example we can have integer,
float and string items in a same list.

1. Create a List in Python

Lets see how to create a list in Python. To create a list all you have to do is to
place the items inside a square bracket [] separated by comma ,.

As we have seen above, a list can have data items of same type or different
types. This is the reason list comes under compound data type.

2. Accessing the items of a list

Syntax to access the list items:

Computer Programming using Python: by Ravinder Sheoran

101

a list of numbers

numbers = [11, 22, 33, 100, 200, 300]

prints 11
print(numbers[0])

prints 300
print(numbers[5])

prints 22
print(numbers[1])

11

300

22

a list of numbers

numbers = [11, 22, 33, 100, 200, 300]

error

print(numbers[1.0])

a list of numbers

numbers = [11, 22, 33, 100, 200, 300]

error

print(numbers[6])

list_name[index]

Example:

Output:

Points to Note:
1. The index cannot be a float number.
For example:

Output:

TypeError: list indices must be integers or slices, not float

2. The index must be in range to avoid IndexError. The range of the index of a list
having 10 elements is 0 to 9, if we go beyond 9 then we will get IndexError.
However if we go below 0 then it would not cause issue in certain cases, we will
discuss that in our next section.
For example:

Output:

IndexError: list index out of range

Computer Programming using Python: by Ravinder Sheoran

102

a list of strings

my_list = ["hello", "world", "hi", "bye"]

prints "bye"
print(my_list[-1])

prints "world"
print(my_list[-3])

prints "hello"
print(my_list[-4])

bye
world

hello

list of numbers

n_list = [1, 2, 3, 4, 5, 6, 7]

list items from 2nd to 3rd
print(n_list[1:3])

list items from beginning to 3rd
print(n_list[:3])

list items from 4th to end of list
print(n_list[3:])

3. Negative Index to access the list items from the
end

Unlike other programming languages where negative index may cause issue,
Python allows you to use negative indexes. The idea behind this to allow you to
access the list elements starting from the end. For example an index of -1 would
access the last element of the list, -2 second last, -3 third last and so on.

 Example of Negative indexes in Python

Output:

4. How to get a sublist in Python using slicing

We can get a sublist from a list in Python using slicing operation. Lets say we
have a list n_listhaving 10 elements, then we can slice this list using
colon : operator. Lets take an example to understand this:

 Slicing example

Computer Programming using Python: by Ravinder Sheoran

103

list of numbers

n_list = [1, 2, 3, 4]

1. adding item at the desired location

adding element 100 at the fourth location
n_list.insert(3, 100)

list: [1, 2, 3, 100, 4]

print(n_list)

2. adding element at the end of the list
n_list.append(99)

list: [1, 2, 3, 100, 4, 99]
print(n_list)

3. adding several elements at the end of list

the following statement can also be written like this:

n_list + [11, 22]
n_list.extend([11, 22])

list: [1, 2, 3, 100, 4, 99, 11, 22]

print(n_list)

Output:

[2, 3]

[1, 2, 3]

[4, 5, 6, 7]
[1, 2, 3, 4, 5, 6, 7]

5. List Operations

There are various operations that we can perform on Lists.

 Addition

There are several ways you can add elements to a list.

Output:

[1, 2, 3, 100, 4]

[1, 2, 3, 100, 4, 99]
[1, 2, 3, 100, 4, 99, 11, 22]

 Update elements

Whole list
print(n_list[:])

Computer Programming using Python: by Ravinder Sheoran

104

list of numbers

n_list = [1, 2, 3, 4]

Changing the value of 3rd item

n_list[2] = 100

list: [1, 2, 100, 4]
print(n_list)

Changing the values of 2nd to fourth items

n_list[1:4] = [11, 22, 33]

list: [1, 11, 22, 33]

print(n_list)

[1, 2, 100, 4]

[1, 11, 22, 33]

list of numbers

n_list = [1, 2, 3, 4, 5, 6]

Deleting 2nd element
del n_list[1]

list: [1, 3, 4, 5, 6]

print(n_list)

Deleting elements from 3rd to 4th
del n_list[2:4]

list: [1, 3, 6]

print(n_list)

Deleting the whole list

del n_list

[1, 3, 4, 5, 6]

[1, 3, 6]

We can change the values of elements in a List. Lets take an example to
understand this:

Output:

 Delete elements

Output:

Deleting elements using remove(), pop() and clear()
methods

Computer Programming using Python: by Ravinder Sheoran

105

str2

str

list of chars

ch_list = ['A', 'F', 'B', 'Z', 'O', 'L']

Deleting the element with value 'B'

ch_list.remove('B')

list: ['A', 'F', 'Z', 'O', 'L']
print(ch_list)

Deleting 2nd element
ch_list.pop(1)

list: ['A', 'Z', 'O', 'L']

print(ch_list)

Deleting all the elements

ch_list.clear()

list: []
print(ch_list)

['A', 'F', 'Z', 'O', 'L']

['A', 'Z', 'O', 'L']
[]

remove(item): Removes specified item from list.
pop(index): Removes the element from the given index.
pop(): Removes the last element.
clear(): Removes all the elements from the list.

Output:

Python Strings

A string is usually a bit of text (sequence of characters). In Python we use ”
(double quotes) or ‘ (single quotes) to represent a string. In this guide we will see
how to create, access, use and manipulate strings in Python programming
language.

1. How to create a String in Python

There are several ways to create strings in Python.
1. We can use ‘ (single quotes), see the string

2. We can use ” (double quotes), see the string

in the following code.

in the source code below.
3. Triple double quotes “”” and triple single quotes ”’ are used for creating multi-
line strings in Python. See the strings str3 and str4 in the following example.

Computer Programming using Python: by Ravinder Sheoran

106

beginnersbook

Chaitanya
Welcome to

Beginnersbook.com

This is a tech
blog

str = "Kevin"

displaying whole string
print(str)

displaying first character of string

print(str[0])

displaying third character of string
print(str[2])

Output:

2. How to access strings in Python

A string is nothing but an array of characters so we can use the indexes to
access the characters of a it. Just like arrays, the indexes start from 0 to the
length-1.

You will get IndexError if you try to access the character which is not in the
range. For example,
if a string is of length 6 and you try to access the 8th char of it then you will get
this error.

You will get TypeError if you do not use integers as indexes, for example if you
use a float as an index then you will get this error.

lets see the ways to create strings in Python
str = 'beginnersbook'
print(str)

str2 = "Chaitanya"
print(str2)

multi-line string
str3 = """Welcome to

Beginnersbook.com"""
print(str3)

str4 = '''This is a tech

blog'''
print(str4)

Computer Programming using Python: by Ravinder Sheoran

107

Kevin
K
v
n

i

str = "Beginnersbook"

displaying whole string
print("The original string is: ", str)

slicing 10th to the last character
print("str[9:]: ", str[9:])

slicing 3rd to 6th character
print("str[2:6]: ", str[2:6])

slicing from start to the 9th character
print("str[:9]: ", str[:9])

slicing from 10th to second last character

print("str[9:-1]: ", str[9:-1])

The original string is: Beginnersbook
str[9:]: book
str[2:6]: ginn

str[:9]: Beginners
str[9:-1]: boo

Output:

3. Python String Operations

Lets see the operations that can be performed on the strings.

Getting a substring in Python – Slicing
operation

We can slice a string to get a substring out of it. To understand the concept

of slicing we must understand the positive and negative indexes in Python (see
the example above to understand this). Lets take a look at the few examples of
slicing.

Output:

displaying the last character of the string
print(str[-1])

displaying the second last char of string

print(str[-2])

Computer Programming using Python: by Ravinder Sheoran

108

str1 = "One"
str2 = "Two"

str3 = "Three"

Concatenation of three strings

print(str1 + str2 + str3)

s = "one"
n = 2

print(s+n)

str = "ABC"

repeating the string str by 3 times
print(str*3)

 Concatenation of strings in Python

The + operator is used for string concatenation in Python. Lets take an
example to understand this:

Output:

OneTwoThree

Note: When + operator is used on numbers it adds them but when it used on
strings it concatenates them. However if you try to use this between string and
number then it will throw TypeError.

For example:

Output:

TypeError: must be str, not int

 Repetition of string – Replication operator

We can use * operator to repeat a string by specified number of times.

Output:

ABCABCABC

 Python Membership Operators in Strings

in: This checks whether a string is present in another string or not. It returns true
if the entire string is found else it returns false.
not in: It works just opposite to what “in” operator does. It returns true if the string
is not found in the specified string else it returns false.

Computer Programming using Python: by Ravinder Sheoran

109

True

False
True

str = "ABC"

str2 = "aBC"
str3 = "XYZ"
str4 = "XYz"

ASCII value of str2 is > str? True
print(str2 > str)

ASCII value of str3 is > str4? False
print(str3 > str4)

True

False

Output:

 Python – Relational Operators on Strings

The relational operators works on strings based on the ASCII values of
characters.
The ASCII value of a is 97, b is 98 and so on.
The ASCII value of A is 65, B is 66 and so on.

Output:

Python Tuple with example

In Python, a tuple is similar to List except that the objects in tuple are immutable
which means we cannot change the elements of a tuple once assigned. On the
other hand, we can change the elements of a list.

1. Tuple vs List

str = "Welcome to beginnersbook.com"
str2 = "Welcome"
str3 = "Chaitanya"
str4 = "XYZ"

str2 is in str? True
print(str2 in str)

str3 is in str? False

print(str3 in str)

str4 not in str? True
print(str4 not in str)

https://beginnersbook.com/2018/02/python-list/

Computer Programming using Python: by Ravinder Sheoran

110

tuple of strings

my_data = ("hi", "hello", "bye")
print(my_data)

tuple of int, float, string

my_data2 = (1, 2.8, "Hello World")
print(my_data2)

tuple of string and list
my_data3 = ("Book", [1, 2, 3])

print(my_data3)

tuples inside another tuple
nested tuple

my_data4 = ((2, 3, 4), (1, 2, "hi"))
print(my_data4)

('hi', 'hello', 'bye')
(1, 2.8, 'Hello World')
('Book', [1, 2, 3])

((2, 3, 4), (1, 2, 'hi'))

1. The elements of a list are mutable whereas the elements of a tuple are
immutable.
2. When we do not want to change the data over time, the tuple is a preferred
data type whereas when we need to change the data in future, list would be a
wise option.
3. Iterating over the elements of a tuple is faster compared to iterating over
a list.
4. Elements of a tuple are enclosed in parenthesis whereas the elements
of list are enclosed in square bracket.

2. How to create a tuple in Python

To create a tuple in Python, place all the elements in a () parenthesis, separated
by commas. A tuple can have heterogeneous data items, a tuple can have string
and list as data items as well.

 Example – Creating tuple

In this example, we are creating few tuples. We can have tuple of same type of
data items as well as mixed type of data items. This example also shows nested
tuple (tuples as data items in another tuple).

Output:

Computer Programming using Python: by Ravinder Sheoran

111

empty tuple
my_data = ()

a tuple with single data item
my_data = (99,)

tuple of strings

my_data = ("hi", "hello", "bye")

displaying all elements

print(my_data)

accessing first element
prints "hi"
print(my_data[0])

accessing third element
prints "bye"

print(my_data[2])

('hi', 'hello', 'bye')
hi
bye

 Empty tuple:

 Tuple with only single element:

Note: When a tuple has only one element, we must put a comma after the
element, otherwise Python will not treat it as a tuple.

If we do not put comma after 99 in the above example then python will treat
my_data as an int variable rather than a tuple.

3. How to access tuple elements

We use indexes to access the elements of a tuple. Lets take few example to
understand the working.

 Accessing tuple elements using positive indexes

We can also have negative indexes in tuple, we have discussed that in the next
section. Indexes starts with 0 that is why we use 0 to access the first element of
tuple, 1 to access second element and so on.

Output:

Computer Programming using Python: by Ravinder Sheoran

112

my_data = (1, 2, "Kevin", 8.9)

accessing last element
prints 8.9

print(my_data[-1])

prints 2
print(my_data[-3])

8.9

2

my_data = (1, "Steve", (11, 22, 33))

prints 'v'
print(my_data[1][3])

prints 22
print(my_data[2][1])

Note:
1. TypeError: If you do not use integer indexes in the tuple. For example
my_data[2.0] will raise this error. The index must always be an integer.
2. IndexError: Index out of range. This error occurs when we mention the index
which is not in the range. For example, if a tuple has 5 elements and we try to
access the 7th element then this error would occurr.

 Negative indexes in tuples

Similar to list and strings we can use negative indexes to access the tuple
elements from the end.
-1 to access last element, -2 to access second last and so on.

Output:

 Accessing elements from nested tuples

Lets understand how the double indexes are used to access the elements of
nested tuple. The first index represents the element of main tuple and the second
index represent the element of the nested tuple.

In the following example, when I used my_data[2][1], it accessed the second
element of the nested tuple. Because 2 represented the third element of main
tuple which is a tuple and the 1 represented the second element of that tuple.

Output:

https://beginnersbook.com/2018/02/python-list/
https://beginnersbook.com/2018/02/python-strings/

Computer Programming using Python: by Ravinder Sheoran

113

my_data = (1, [9, 8, 7], "World")
print(my_data)

changing the element of the list
this is valid because list is mutable

my_data[1][2] = 99
print(my_data)

changing the element of tuple

This is not valid since tuple elements are immutable

TypeError: 'tuple' object does not support item assignment
my_data[0] = 101

print(my_data)

(1, [9, 8, 7], 'World')

(1, [9, 8, 99], 'World')

my_data = (1, 2, 3, 4, 5, 6)
print(my_data)

not possible

error
del my_data[2]

4. Operations that can be performed on tuple in
Python

Lets see the operations that can be performed on the tuples in Python.

 Changing the elements of a tuple

We cannot change the elements of a tuple because elements of tuple are
immutable. However we can change the elements of nested items that are
mutable. For example, in the following code, we are changing the element of the
list which is present inside the tuple. List items are mutable that’s why it is
allowed.

Output:

 Delete operation on tuple

We already discussed above that tuple elements are immutable which also
means that we cannot delete the elements of a tuple. However deleting entire
tuple is possible.

v
22

Computer Programming using Python: by Ravinder Sheoran

114

my_data = (11, 22, 33, 44, 55, 66, 77, 88, 99)

print(my_data)

elements from 3rd to 5th
prints (33, 44, 55)

print(my_data[2:5])

elements from start to 4th
prints (11, 22, 33, 44)

print(my_data[:4])

elements from 5th to end
prints (55, 66, 77, 88, 99)

print(my_data[4:])

elements from 5th to second last
prints (55, 66, 77, 88)

print(my_data[4:-1])

displaying entire tuple

print(my_data[:])

my_data = (11, 22, 33, 44, 55, 66, 77, 88, 99)

print(my_data)

Output:

(1, 2, 3, 4, 5, 6)

 Slicing operation in tuples

Output:

(11, 22, 33, 44, 55, 66, 77, 88, 99)

(33, 44, 55)

(11, 22, 33, 44)

(55, 66, 77, 88, 99)

(55, 66, 77, 88)

(11, 22, 33, 44, 55, 66, 77, 88, 99)

 Membership Test in Tuples

in: Checks whether an element exists in the specified tuple.
not in: Checks whether an element does not exist in the specified tuple.

deleting entire tuple is possible
del my_data

not possible

error
because my_data is deleted

print(my_data)

Computer Programming using Python: by Ravinder Sheoran

115

(11, 22, 33, 44, 55, 66, 77, 88, 99)

True

False
False

True

tuple of fruits

my_tuple = ("Apple", "Orange", "Grapes", "Banana")

iterating over tuple elements

for fruit in my_tuple:
print(fruit)

Apple
Orange

Grapes
Banana

Output:

 Iterating a tuple

Output:

Python Dictionary with examples

Dictionary is a mutable data type in Python. A python dictionary is a collection of
key and value pairs separated by a colon (:), enclosed in curly braces {}.

Python Dictionary

Here we have a dictionary. Left side of the colon(:) is the key and right side of the
: is the value.

mydict = {'StuName': 'Ajeet', 'StuAge': 30, 'StuCity': 'Agra'}

true

print(22 in my_data)

false
print(2 in my_data)

false
print(88 not in my_data)

true

print(101 not in my_data)

Computer Programming using Python: by Ravinder Sheoran

116

mydict = {'StuName': 'Ajeet', 'StuAge': 30, 'StuCity': 'Agra'}

print("Student Age is:", mydict['StuAge'])
print("Student City is:", mydict['StuCity'])

mydict = {'StuName': 'Ajeet', 'StuAge': 30, 'StuCity': 'Agra'}
print("Student Age is:", mydict['StuClass'])
print("Student City is:", mydict['StuCity'])

Points to Note:
1. Keys must be unique in dictionary, duplicate values are allowed.

2. A dictionary is said to be empty if it has no key value pairs. An empty
dictionary is denoted like this: {}.
3. The keys of dictionary must be of immutable data types such as String,
numbers or tuples.

Accessing dictionary values using keys in Python

To access a value we can can use the corresponding key in the square brackets
as shown in the following example. Dictionary name followed by square brackets
and in the brackets we specify the key for which we want the value.

Output:

If you specify a key which doesn’t exist in the dictionary then you will get a
compilation error. For example. Here we are trying to access the value for key
‘StuClass’ which does not exist in the dictionary mydict, thus we get a compilation
error when we run this code.

Output:

Computer Programming using Python: by Ravinder Sheoran

117

mydict = {'StuName': 'Ajeet', 'StuAge': 30, 'StuCity': 'Agra'}
print("Student Age before update is:", mydict['StuAge'])

print("Student City before update is:", mydict['StuCity'])
mydict['StuAge'] = 31
mydict['StuCity'] = 'Noida'

print("Student Age after update is:", mydict['StuAge'])
print("Student City after update is:", mydict['StuCity'])

mydict = {'StuName': 'Steve', 'StuAge': 4, 'StuCity': 'Agra'}
mydict['StuClass'] = 'Jr.KG'
print("Student Name is:", mydict['StuName'])
print("Student Class is:", mydict['StuClass'])

Change values in Dictionary

Here we are updating the values for the existing key-value pairs. To update a
value in dictionary we are using the corresponding key.

Output:

Adding a new entry (key-value pair) in dictionary

We can also add a new key-value pair in an existing dictionary. Lets take an
example to understand this.

Output:

Loop through a dictionary

Computer Programming using Python: by Ravinder Sheoran

118

mydict = {'StuName': 'Steve', 'StuAge': 4, 'StuCity': 'Agra'}

for e in mydict:
print("Key:",e,"Value:",mydict[e])

mydict = {'StuName': 'Steve', 'StuAge': 4, 'StuCity': 'Agra'}
del mydict['StuCity']; # remove entry with key 'StuCity'

mydict.clear(); # remove all key-value pairs from mydict
del mydict ; # delete entire dictionary mydict

We can loop through a dictionary as shown in the following example. Here we
are using for loop.

Output:

Python delete operation on dictionary

We can delete key-value pairs as well as entire dictionary in python. Lets take an
example. As you can see we can use del following by dictionary name and in
square brackets we can specify the key to delete the specified key value pair
from dictionary.

To delete all the entries (all key-value pairs) from dictionary we can use the
clear() method.

To delete entire dictionary along with all the data use del keyword followed by
dictionary name as shown in the following example.

Python Sets

BY CHAITANYA SINGH | FILED UNDER: PYTHON TUTORIAL

Set is an unordered and unindexed collection of items in Python. Unordered
means when we display the elements of a set, it will come out in a random order.

https://beginnersbook.com/2018/01/python-for-loop/
https://beginnersbook.com/category/python-tutorial/

Computer Programming using Python: by Ravinder Sheoran

119

Set Example

myset = {"hi", 2, "bye", "Hello World"}
print(myset)

Set Example

myset = {"hi", 2, "bye", "Hello World"}

checking whether 2 is in myset

print(2 in myset)

checking whether "hi" is in myset
print("hi" in myset)

checking whether "BeginnersBook" is in myset
print("BeginnersBook" in myset)

Set Example

myset = {"hi", 2, "bye", "Hello World"}

loop through the elements of myset
for a in myset:

print(a)

Unindexed means, we cannot access the elements of a set using the indexes like
we can do in list and tuples.

The elements of a set are defined inside square brackets and are separated by
commas. For example –

myset = [1, 2, 3, 4, "hello"]

Python Set Example

Checking whether an item is in the set

We can check whether an item exists in Set or not using “in” operator as shown
in the following example. This returns the boolean value true or false. If the item
is in the given set then it returns true, else it returns false.

Loop through the elements of a Set in Python

We can loop through the elements of a set in Python as shown in the following
elements. As you can see in the output that the elements will appear in random
order each time you run the code.

https://beginnersbook.com/2018/02/python-list/
https://beginnersbook.com/2018/02/python-tuple/

Computer Programming using Python: by Ravinder Sheoran

120

Set Example

myset = {"hi", 2, "bye", "Hello World"}

print("Original Set:", myset)

adding an item

myset.add(99)
print("Set after adding 99:", myset)

removing an item
myset.remove("bye")

print("Set after removing bye:", myset)

Python – Add or remove item from a Set

We can add an item in a Set using add() function and we can remove an item
from a set using remove() function as shown in the following example.

Set Methods

1. add(): This method adds an element to the Set.
2. remove(): This method removes a specified element from the Set

3. discard(): This method works same as remove() method, however it doesn’t
raise an error when the specified element doesn’t exist.
4. clear(): Removes all the elements from the set.
5. copy(): Returns a shallow copy of the set.
6. difference(): This method returns a new set which is a difference between two
given sets.
7. difference_update(): Updates the calling set with the Set difference of two
given sets.
8. intersection(): Returns a new set which contains the elements that are
common to all the sets.
9. intersection_update(): Updates the calling set with the Set intersection of two
given sets.
10. isdisjoint(): Checks whether two sets are disjoint or not. Two sets are disjoint
if they have no common elements.
11. issubset(): Checks whether a set is a subset of another given set.
12. pop(): Removes and returns a random element from the set.
13. union(): Returns a new set with the distinct elements of all the sets.
14. update(): Adds elements to a set from other passed iterable.

15. symmetric_difference(): Returns a new set which is a symmetric difference of
two given sets.
16. symmetric_difference_update(): Updates the calling set with the symmetric
difference of two given sets.

https://beginnersbook.com/2019/03/python-set-add-method/
https://beginnersbook.com/2019/03/python-set-remove-method/
https://beginnersbook.com/2019/03/python-set-discard-method/
https://beginnersbook.com/2019/03/python-set-clear-method/
https://beginnersbook.com/2019/03/python-set-copy-method/
https://beginnersbook.com/2019/03/python-set-difference-method/
https://beginnersbook.com/2019/03/python-set-difference_update-method/
https://beginnersbook.com/2019/03/python-set-intersection-method/
https://beginnersbook.com/2019/03/python-set-intersection_update/
https://beginnersbook.com/2019/04/python-set-isdisjoint-method/
https://beginnersbook.com/2019/04/python-set-issubset-method/
https://beginnersbook.com/2019/04/python-set-pop-method/
https://beginnersbook.com/2019/04/python-set-union-method/
https://beginnersbook.com/2019/04/python-set-update-method/
https://beginnersbook.com/2019/04/python-set-symmetric_difference-method/
https://beginnersbook.com/2019/04/python-set-symmetric_difference_update-method/

Computer Programming using Python: by Ravinder Sheoran

121

class Human:

instance attributes

def init (self, name, height, weight):
self.name = name

self.height = height
self.weight = weight

instance methods (behaviours)

Python OOPs Concepts

Python is an object-oriented programming language. What this means is we
can solve a problem in Python by creating objects in our programs. In this guide,
we will discuss OOPs terms such as class, objects, methods etc. along with the
Object oriented programming features such
as inheritance, polymorphism, abstraction, encapsulation.

Object

An object is an entity that has attributes and behaviour. For example, Ram is an
object who has attributes such as height, weight, color etc. and has certain
behaviours such as walking, talking, eating etc.

Class

A class is a blueprint for the objects. For example, Ram, Shyam, Steve, Rick are
all objects so we can define a template (blueprint) class Human for these objects.
The class can define the common attributes and behaviours of all the objects.

Methods

As we discussed above, an object has attributes and behaviours. These
behaviours are called methods in programming.

Example of Class and Objects

In this example, we have two objects Ram and Steve that belong to the class Human

Object attributes: name, height, weight
Object behaviour: eating()

Source code

Computer Programming using Python: by Ravinder Sheoran

122

Height of Ram is 6

Weight of Ram is 60
Ram is eating Pizza
Weight of Steve is 5.9

Weight of Steve is 56
Steve is eating Big Kahuna Burger

class DemoClass:

"""This is my docstring, this explains brief about the class"""

this prints the docstring of the class

Output:

How to create Class and Objects in Python

In the previous guide, we discussed Object-oriented programming in Python. In
this tutorial, we will see how to create classes and objects in Python.

Define class in Python

A class is defined using the keyword class.

Example

In this example, we are creating an empty class DemoClass. This class has no
attributes and methods.

The string that we mention in the triple quotes is a docstring which is an optional
string that briefly explains the purpose of the class.

def eating(self, food):

return "{} is eating {}".format(self.name, food)

creating objects of class Human
ram = Human("Ram", 6, 60)

steve = Human("Steve", 5.9, 56)

accessing object information

print("Height of {} is {}".format(ram.name, ram.height))

print("Weight of {} is {}".format(ram.name, ram.weight))
print(ram.eating("Pizza"))

print("Weight of {} is {}".format(steve.name, steve.height))
print("Weight of {} is {}".format(steve.name, steve.weight))

print(steve.eating("Big Kahuna Burger"))

https://beginnersbook.com/2018/03/python-oops-concepts/

Computer Programming using Python: by Ravinder Sheoran

123

obj

MyNewClass

class MyNewClass:

"""This class demonstrates the creation of objects"""

instance attribute

num = 100

instance method

def hello(self):
print("Hello World!")

creating object of MyNewClass
obj = MyNewClass()

prints attribute value
print(obj.num)

calling method hello()

obj.hello()

prints docstring
print(MyNewClass. doc)

100

Hello World!

This class demonstrates the creation of objects

print(DemoClass. doc)

Output:

This is my docstring, this explains brief about the class

Creating Objects of class

In this example, we have a class
function hello(). We are creating an object

that has an attribute num and a
of the class and accessing the

attribute value of object and calling the method hello() using the object.

Output:

Python Constructors – default and

parameterized

A constructor is a special kind of method which is used for initializing the instance
variables during object creation. In this guide, we will see what is a constructor,
types of it and how to use them in the python programming with examples.

1. What is a Constructor in Python?

Computer Programming using Python: by Ravinder Sheoran

124

class DemoClass:

constructor
def init (self):

initializing instance variable
self.num=100

a method

def read_number(self):

print(self.num)

creating object of the class. This invokes constructor
obj = DemoClass()

calling the instance method using the object obj
obj.read_number()

def init (self):

body of the constructor

Constructor is used for initializing the instance members when we create the
object of a class.

For example:
Here we have a instance variable num which we are initializing in the constructor.
The constructor is being invoked when we create the object of the class (obj in
the following example).

Output:

100

 Syntax of constructor declaration

As we have seen in the above example that a constructor always has a

name init and the name init is prefixed and suffixed with a double underscore().
We declare a constructor using def keyword, just like methods.

2. Types of constructors in Python

We have two types of constructors in Python.

1. default constructor – this is the one, which we have seen in the above
example. This constructor doesn’t accept any arguments.
2. parameterized constructor – constructor with parameters is known as
parameterized constructor.

 Python – default constructor example

Computer Programming using Python: by Ravinder Sheoran

125

def init (self):

no body, does nothing.

class DemoClass:
num = 101

a method

def read_number(self):
print(self.num)

creating object of the class

obj = DemoClass()

calling the instance method using the object obj
obj.read_number()

class DemoClass:
num = 101

non-parameterized constructor
def init (self):

self.num = 999

a method

def read_number(self):
print(self.num)

creating object of the class

obj = DemoClass()

Note: An object cannot be created if we don’t have a constructor in our program.
This is why when we do not declare a constructor in our program, python does it
for us. Lets have a look at the example below.

Example: When we do not declare a constructor
In this example, we do not have a constructor but still we are able to create an
object for the class. This is because there is a default constructor implicitly
injected by python during program compilation, this is an empty default
constructor that looks like this:

Source Code:

Output:

101

Example: When we declare a constructor
In this case, python does not create a constructor in our program.

Computer Programming using Python: by Ravinder Sheoran

126

class DemoClass:
num = 101

parameterized constructor
def init (self, data):

self.num = data

a method

def read_number(self):
print(self.num)

creating object of the class

this will invoke parameterized constructor
obj = DemoClass(55)

calling the instance method using the object obj
obj.read_number()

creating another object of the class

obj2 = DemoClass(66)

calling the instance method using the object obj
obj2.read_number()

Output:

999

 Python – Parameterized constructor example

When we declare a constructor in such a way that it accepts the arguments
during object creation then such type of constructors are known as
Parameterized constructors. As you can see that with such type of constructors
we can pass the values (data) during object creation, which is used by the
constructor to initialize the instance members of that object.

Output:

Python Classes and Methods

Python is an “object-oriented programming language.” This means that almost all the code is
implemented using a special construct called classes. Programmers use classes to keep related
things together. This is done using the keyword “class,” which is a grouping of object-oriented
constructs.

calling the instance method using the object obj
obj.read_number()

Computer Programming using Python: by Ravinder Sheoran

127

Instance = class(arguments)

>>> class Snake:

... pass

...

>>> snake = Snake()

>>> print(snake)

< main .Snake object at 0x7f315c573550>

>>> class Snake:

...

...

name = "python" # set an attribute `name` of the class

By the end of this tutorial you will be able to:

1. Define what is a class
2. Describe how to create a class
3. Define what is a method
4. Describe how to do object instantiation
5. Describe how to create instance attributes in Python

What is a class?

A class is a code template for creating objects. Objects have member variables and have behaviour
associated with them. In python a class is created by the keyword class.

An object is created using the constructor of the class. This object will then be called
the instance of the class. In Python we create instances in the following manner

How to create a class

The simplest class can be created using the class keyword. For example, let's create a simple,
empty class with no functionalities.

Attributes and Methods in class:

A class by itself is of no use unless there is some functionality associated with it. Functionalities are
defined by setting attributes, which act as containers for data and functions related to those
attributes. Those functions are called methods.

Attributes:

You can define the following class with the name Snake. This class will have an attribute name.

Computer Programming using Python: by Ravinder Sheoran

128

>>> # instantiate the class Snake and assign it to variable snake

>>> snake = Snake()

>>> # access the class attribute name inside the class Snake.

>>> print(snake.name)

python

>>> class Snake:

...

...

...

self

...

keyword

...

name = "python"

def change_name(self, new_name): # note that the first argument is

self.name = new_name # access the class attribute with the self

>>> # instantiate the class

>>> snake = Snake()

>>> # print the current object name

>>> print(snake.name)

python

>>> # change the name using the change_name method

>>> snake.change_name("anaconda")

>>> print(snake.name)

anaconda

You can assign the class to a variable. This is called object instantiation. You will then be able to
access the attributes that are present inside the class using the dot . operator. For example, in the

Snake example, you can access the attribute name of the class Snake.

Methods

Once there are attributes that “belong” to the class, you can define functions that will access the
class attribute. These functions are called methods. When you define methods, you will need to
always provide the first argument to the method with a self keyword.

For example, you can define a class Snake, which has one attribute name and one
method change_name. The method change name will take in an argument new_name along with the

keyword self.

Now, you can instantiate this class Snake with a variable snake and then change the name with the

method change_name.

Instance attributes in python and the init method

Computer Programming using Python: by Ravinder Sheoran

129

class Snake:

def init (self, name):

self.name = name

def change_name(self, new_name):

self.name = new_name

>>> # two variables are instantiated

>>> python = Snake("python")

>>> anaconda = Snake("anaconda")

>>> # print the names of the two variables

>>> print(python.name)

python

>>> print(anaconda.name)

anaconda

You can also provide the values for the attributes at runtime. This is done by defining the attributes
inside the init method. The following example illustrates this.

Now you can directly define separate attribute values for separate objects. For example,

Python classes and object object-oriented
programming II

Classes are written to organize and structure code into meaningful blocks, which can then be used
to implement the business logic. These implementations are used in such a way that more complex
parts are abstracted away to provide for simpler interfaces which can then be used to build even
simpler blocks. While doing this we will find that there are lots of times when we will need to
establish relationships between the classes that we build. These relationships can then be
established using either inheritance or composition. At this point it is best you take a look at our
[Python Classes tutorial][1] to get in-depth knowledge on how classes are written in Python. Also, in
case you are already doing object oriented programming in some other language, you may want to
check out our notes on design patterns.

In this tutorial you will get to know how to build relationships between classes using inheritance and
composition and the syntax that is needed.

Python inheritance

What is Inheritance

In inheritance an object is based on another object. When inheritance is implemented, the methods
and attributes that were defined in the base class will also be present in the inherited class. This is

https://www.hackerearth.com/practice/notes/design-patterns-1/

Computer Programming using Python: by Ravinder Sheoran

130

class DerivedClassName(BaseClassName):

pass

class Rocket:

def init (self, name, distance):

self.name = name

self.distance = distance

def launch(self):

return "%s has reached %s" % (self.name, self.distance)

class MarsRover(Rocket): # inheriting from the base class

def init (self, name, distance, maker):

Rocket. init (self, name, distance)

self.maker = maker

def get_maker(self):

return "%s Launched by %s" % (self.name, self.maker)

if name == " main ":

x = Rocket("simple rocket", "till stratosphere")

y = MarsRover("mars_rover", "till Mars", "ISRO")

print(x.launch())

print(y.launch())

print(y.get_maker())

➜ Documents python rockets.py
simple rocket has reached till stratosphere

mars_rover has reached till Mars

mars_rover Launched by ISRO

generally done to abstract away similar code in multiple classes. The abstracted code will reside in
the base class and the previous classes will now inherit from the base class.

How to achieve Inheritance in Python

Python allows the classes to inherit commonly used attributes and methods from other classes
through inheritance. We can define a base class in the following manner:

Let's look at an example of inheritance. In the following example, Rocket is the base class and
MarsRover is the inherited class.

The output of the code above is shown below:

Python Composition:

Computer Programming using Python: by Ravinder Sheoran

131

class GenericClass:

define some attributes and methods

class ASpecificClass:

Instance_variable_of_generic_class = GenericClass

use this instance somewhere in the class

some_method(Instance_variable_of_generic_class)

class MarsRoverComp():

def init (self, name, distance, maker):

self.rocket = Rocket(name, distance) # instantiating the base

self.maker = maker

def get_maker(self):

return "%s Launched by %s" % (self.rocket.name, self.maker)

if name == " main ":

z = MarsRover("mars_rover2", "till Mars", "ISRO")

print(z.launch())

print(z.get_maker())

➜ Documents python rockets.py
simple rocket has reached till stratosphere

mars_rover has reached till Mars

mars_rover Launched by ISRO

mars_rover2 has reached till Mars

mars_rover2 Launched by ISRO

What is composition

In composition, we do not inherit from the base class but establish relationships between classes
through the use of instance variables that are references to other objects. Talking in terms of
pseudocode you may say that

So you will instantiate the base class and then use the instance variable for any business logic.

How to achieve composition in Python

To achieve composition you can instantiate other objects in the class and then use those instances.
For example in the below example we instantiate the Rocket class using self.rocket and then

using self.rocket in the method get_maker.

The output of the total code which has both inheritance and composition is shown below:

Computer Programming using Python: by Ravinder Sheoran

132

>>> try:

... print("in the try block")

... print(1/0)

... except:

... print("In the except block")

... finally:

...

...

print("In the finally block")

in the try block

In the except block

In the finally block

exc.py

while True:

try:

user = int(input())

if user < 0:

raise ValueError("please give positive number")

else:

print("user input: %s" % user)

except ValueError as e:

print(e)

Errors and Exceptions in Python

Errors are problems in the program that the program should not recover from. If at any point in the
program an error occurs, then the program should exit gracefully. On the other hand, Exceptions are
raised when an external event occurs which in some way changes the normal flow of the program.

In this tutorial you will learn about common types of Errors and Exceptions in Python and common
paradigms in handling them.

Handling Exceptions with Try/Except/Finally

Errors and Exceptions in Python are handled with the Try: Except: Finally construct. You put

the unsafe code in the try: block. You put the fall-back code in the Except: block. The final code

is kept in the Finally: block.

For example, look at the code below.

Raising exceptions for a predefined condition

Exceptions can also be raised if you want the code to behave within specific parameters. For
example, if you want to limit the user-input to only positive integers, raise an exception.

So the output of the above program is:

Computer Programming using Python: by Ravinder Sheoran

133

>>> for lib in popular_python_libs:

... print(lib)

...

requests

scrapy

pillow

SQLAlchemy

NumPy

Python Iterators, generators, and the for loop

Iterators are containers for objects so that you can loop over the objects. In other words, you can run
the "for" loop over the object. There are many iterators in the Python standard library. For example,
list is an iterator and you can run a for loop over a list.

In this tutorial you will get to know:

1. How to create a custom iterator
2. How to create a generator
3. How to run for loops on iterators and generators

Python Iterators and the Iterator protocol

To create a Python iterator object, you will need to implement two methods in your iterator class.

➜ python exc.py

4

user input: 4

3

user input: 3

2

user input: 2

1

user input: 1

-1

please give positive number

5

user input: 5

2

user input: 2

-5

please give positive number

^C

Traceback (most recent call last):

File "exc.py", line 3, in <module>

user = int(input())

KeyboardInterrupt

Computer Programming using Python: by Ravinder Sheoran

134

iterator_example.py

"""

This should give an iterator with a emoticon.

"""

import random

class CoolEmoticonGenerator(object):

"""docstring for CoolEmoticonGenerator."""

strings = "!@#$^*_-=+?/,.:;~"

grouped_strings = [("(", ")"), ("<", ">"), ("[", "]"), ("{", "}")]

def create_emoticon(self, grp):

"""actual method that creates the emoticon"""

face_strings_list = [random.choice(self.strings) for _ in range(3)]

face_strings = "".join(face_strings_list)

emoticon = (grp[0], face_strings, grp[1])

emoticon = "".join(emoticon)

return emoticon

def iter (self):

"""returns the self object to be accessed by the for loop"""

return self

def next (self):

"""returns the next emoticon indefinitely"""

grp = random.choice(self.grouped_strings)

return self.create_emoticon(grp)

from iterator_example import CoolEmoticonGenerator

g = CoolEmoticonGenerator()

print([next(g) for _ in range(5)])

➜ python3.5 iterator_example.py

['<,~!>', '<;_~>', '<!;@>', '[~=#]', '{?^-}']

 iter : This returns the iterator object itself and is used while using the "for" and "in" keywords.

 next : This returns the next value. This would return the StopIteration error once all the objects

have been looped through.

Let us create a cool emoticon generator and l iterators.

Now you can call the above class as an iterator. Which means you can run the next function on it.

Running the program above gives us the following output. The exact output may be different from
what you get but it will be similar.

Computer Programming using Python: by Ravinder Sheoran

135

>>> def vowels():

... yield "a"

... yield "e"

... yield "i"

... yield "o"

... yield "u"

...

>>> for i in vowels():

... print(i)

...

a

e

i

o

u

def create_emoticon_generator():

while True:

strings = "!@#$^*_-=+?/,.:;~"

grouped_strings = [("(", ")"), ("<", ">"), ("[", "]"), ("{", "}")]

grp = random.choice(grouped_strings)

face_strings_list = [random.choice(strings) for _ in range(3)]

face_strings = "".join(face_strings_list)

emoticon = (grp[0], face_strings, grp[1])

emoticon = "".join(emoticon)

yield emoticon

from iterator_example import CoolEmoticonGenerator

g = create_emoticon_generator()

print([next(g) for _ in range(5)])

➜ python3.5 iterator_example.py

['(+~?)', '<**_>', '($?/)', '[#=+]', '{*=.}']

You can use the KeyboardInterrupt to stop the execution.

Python Generators

Python generator gives us an easier way to create python iterators. This is done by defining a
function but instead of the return statement returning from the function, use the "yield" keyword. For
example, see how you can get a simple vowel generator below.

Now let's try and create the CoolEmoticonGenerator.

Now, if you run the generator using the runner below

You should get the following output

Computer Programming using Python: by Ravinder Sheoran

136

def name_of_the_function(arguments):

'''

doctring of the function

note that the function block is indented by 4 spaces

'''

body of the function

return the return value or expression

def add_two_numbers(num1, num2):

'''returns the sum of num1 and num2'''

result = num1 + num2

return result

Functions

A function is a block of code that takes in some data and, either performs some kind of
transformation and returns the transformed data, or performs some task on the data, or both.
Functions are useful because they provide a high degree of modularity. Similar code can be easily
grouped into functions and you can provide a name to the function that describes what the function
is for. Functions are the simplest, and, sometimes the most useful, tool for writing modular code.

In this tutorial you will get to know:

• How to create a function
• How to call a function

How to create a function:

In Python to create a function, you need to write it in the following manner. Please note that the body
of the function is indented by 4 spaces.

You can look at the example below where a function returns the sum of two numbers.

Here are all the parts of the function:

Keyword def: This is the keyword used to say that a function will be defined now, and the next word

that is there, is the function name.

Function name: This is the name that is used to identify the function. The function name comes
after the defkeyword. Function names have to be a single word. PEP8, which is a style guide for

Python, recommends that in case multiple words are used, they should be in lowercase and they
should be separated with an underscore. In the example above, add_two_numbers is the parameter

name.

Computer Programming using Python: by Ravinder Sheoran

137

def add_two_numbers(num1, num2):

'''returns the sum of num1 and num2'''

result = num1 + num2

return result

add_two_numbers(1, 2)

>>> def add_two_numbers(num1, num2):

... '''returns the sum of num1 and num2'''

... result = num1 + num2

... return result

...

>>> # call the function add_two_numbers with arguments 4 and 5 and assign it

>>> # to a variable sum_of_4_and_5

>>> sum_of_4_and_5 = add_two_numbers(4, 5)

>>>

>>> # show the value stored in sum_of_4_and_5

Parameter list: Parameter list are place holders that define the parameters that go into the function.
The parameters help to generalise the transformation/computation/task that is needed to be done. In
Python, parameters are enclosed in parentheses. In the example above, the parameters
are num1and num2. You can pass as many parameters as needed to a function.

Function docstrings: These are optional constructs that provide a convenient way for associated
documentation to the corresponding function. Docstrings are enclosed by triple quotes '''you
will write the docstring here'''

Function returns: Python functions returns a value. You can define what to return by
the return keyword. In the example above, the function returns result. In case you do not define

a return value, the function will return None.

How to call a function

Call a function with a return value

To call a function means that you are telling the program to execute the function. If there is a return
value defined, the function would return the value, else the function would return None. To call the
function, you write the name of the function followed by parentheses. In case you need to pass
parameters/arguments to the function, you write them inside the parentheses.

For example, if you had a function that added two numbers

You would call the function like this:

Note that arguments 1 and 2 have been passed. Hence, the return value will be 3. You can put any
two numbers in place of 1 and 2, and it will return the corresponding sum of the two numbers. But
calling a function and not doing anything with the result is meaningless, isn’t it? So you can now
assign it to a variable which may be used later on. In the following example, can just printing it.

Computer Programming using Python: by Ravinder Sheoran

138

def printing_side_effects():

'''a function with side effects'''

print('this is a function with side effects and performs some task')

>>> printing_side_effects()

>>> def string_multiplier(string_arg, number):

... '''takes the string_arg and multiplies it with one more than the

number'''

...

...

return string_arg * (number + 1)

>>> # passing string_arg and number and in that order...

>>> print(string_multiplier('a', 5))aaaaaa

>>> # below code will return error as the arguments are not in order...

>>> print(string_multiplier(5, 'a'))Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 3, in string_multiplier

TypeError: must be str, not int

Call a function that performs a task and has no return value

In case the function is not meant to return anything and just performs some task, like committing
something to a database or changing the text of some button in the user interface, then you do not
need to assign the function to a variable. You can just call the function.

For example, if you had a function that prints a string

You can just call the function and it will get executed.

this is a function with side effects and performs some task

How to call a function with arguments

Note that in this case you pass parameters in the order in which they are supposed to be processed.
For example, if you had a function that duplicates a string by the number of times, where both the
string and the number needs to be provided by the function, such as:

Variables

>>> print(sum_of_4_and_5)

9

Computer Programming using Python: by Ravinder Sheoran

139

“Variable name” = “ value or information ”

>>> # assign the value 299792458 to the variable speed_of_light

>>> speed_of_light = 299792458

>>> print(speed_of_light)

299792458

>>> # assign a decimal number 3.14 to the variable pi

>>> pi = 3.14

>>> print(pi)

3.14

A variable can be considered a storage container for data. Every variable will have a name. For
example, we can have a variable named speed_of_light. A variable is a good way to store

information while making it easy to refer to that information in our code later. A close analogy to
variables may be a named box where you can store information.

For instance, instead of working with the number 3.14, we can assign it to a variable pi. You may

forget that you need to use the number 3.14 when you will need to make relevant calculations later.
On the other hand, it will be easier for you to remember to call pi when writing the code.

In this tutorial, you will learn how to name a variable and assign values. You will take a closer look at
the methods that variables can support.

Assignment

In Python, assignment can be done by writing the variable name followed by the value separated by
an equal =symbol. The skeleton or pseudo-code is

In the following examples, you assign various numbers and strings to variables.

Computer Programming using Python: by Ravinder Sheoran

140

>>> multiple word = "multiple word"

File "<stdin>", line 1

multiple word = "multiple word"

^

SyntaxError: invalid syntax

>>> multiple_word = "multiple word" # note the variable name has an

underscore _

>>> print(multiple_word)

multiple word

>>> 1var = 1

File "<stdin>", line 1

1var = 1

^

SyntaxError: invalid syntax

>>> var1 = 1

>>> print(var1)

1

Valid and invalid ways of assigning variables

Multiple words Assignment only works when the variable is a single word.

So, if you want to have more than one word in the name, the convention is to use underscore "_" in
the name.

Do not start with a number

You cannot start a variable name with a number. The rest of the variable name can contain a
number.

For example, 1var is wrong.

But var1 is fine.

More points to remember while deciding a variable name

>>> # assign a string

>>> fav_lang = "python"

>>> print(fav_lang)

'python'

Computer Programming using Python: by Ravinder Sheoran

141

>>> # a_var_containing_# will not work as it has # in the name

>>> a_var_containing_# = 1

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'a_var_containing_' is not defined

>>> # but if we remove the # then it works

>>> a_var_containing_ = 1

>>> print(a_var_containing_)

1

>>> 零 = 0 # chinese

>>> print(零)

0

>>> ශුන්ය = 0 # sinhala
>>> print(ශුන්ය)
0

>>> # assigning list

>>> fav_writers = ["Mark Twain", "Fyodor Dostoyevsky"]

>>> print(fav_writers)

['Mark Twain', 'Fyodor Dostoyevsky']

>>> # assign dicts

...

>>> birthdays = {"mom": "9Jan", "daughter": "24Dec"}

>>> print(birthdays)

{'mom': '9Jan', 'daughter': '24Dec'}

You can only include a-z, A-Z, _, and 0-9 in your variable names. Other special characters are not
permitted.

For example, you cannot have hash key # in your variable names.

Interestingly, you can have a variable name in your local language.

More on Assignments

Python supports assigning all data structures to variables.

For example, we can assign a list to a variable like you see in the following example, where we
assign the list of names, denoted by [...], to the variable fav_writers.

Here is another example where you can assign dicts, shown by {...}, to a variable birthdays.

Computer Programming using Python: by Ravinder Sheoran

142

>>> # assigning functions

...

>>> import functools

>>> memoize = functools.lru_cache

>>> print(memoize)

<function lru_cache at 0x7fb2a6b42f28>

>>> # class assignment

...

>>> class MyClass:

... pass

...

>>> give_me_more = MyClass()

>>> print(give_me_more)

< main .MyClass object at 0x7f512e65bfd0>

>>> var = 2

>>> print(var + 3)

5

>>> number = input()

2

>>> type(number)

<class 'str'>

>>> number = int(number)

>>> type(number)

<class 'int'>

Data structures such as lists and dicts will be discussed in later tutorials.

You can also assign functions and classes to variables.

You will know more about functions and classes in later tutorials.

Working with variables

Variables will support any method the underlying type supports. For example, if an integer value is
stored in a variable, then the variable will support integer functions such as addition.

In the following example, you assign the number 2 to the variable var and then add 3 to var. This

will print 5, the result of 3 being added to the value stored in var which is 2.

You can make a change in a variable and assign it to the same variable. This is done generally
when some kind of data type change is done.

For example, you can take a number as input. This will take in the digit as a string. You can then
take the string number and convert it to int and assign it to the same number.

Computer Programming using Python: by Ravinder Sheoran

143

>>> print(range(3))

[0, 1, 2]

>>> id1, id2, id3 = range(3)

>>> print(id1)

0

>>> print(id2)

1

>>> print(id3)

2

>>> single_quote_character = 'a'

>>> print(single_quote_character)

a

>>> print(type(single_quote_character)) # check the type of the variable.

<class 'str'>

We will use a function range(3) which returns three values.

Something that returns three values can be unpacked to three variables. This is like saying take
whatever is in range(3) and instead of assigning it to a single variable, break it up and assign

individual values to the three variables. This is done using a comma between the variables.

Python String:

Strings are sequences of characters. Your name can be considered a string. Or, say you live in
Zambia, then your country name is "Zambia", which is a string.

In this tutorial you will see how strings are treated in Python, the different ways in which strings are
represented in Python, and the ways in which you can use strings in your code.

How to create a string and assign it to a variable

To create a string, put the sequence of characters inside either single quotes, double quotes, or
triple quotes and then assign it to a variable. You can look into how variables work in Python in the
Python variables tutorial.

For example, you can assign a character ‘a’ to a variable single_quote_character. Note that the

string is a single character and it is “enclosed” by single quotes.

Similarly, you can assign a single character to a variable double_quote_character. Note that the

string is a single character but it is “enclosed” by double quotes.

Computer Programming using Python: by Ravinder Sheoran

144

>>> double_quote_multiple_characters = "aeiou"

>>> single_quote_multiple_characters = 'aeiou'

>>> print(type(double_quote_multiple_characters),

type(single_quote_multiple_characters))

<class 'str'> <class 'str'>

>>> print(double_quote_multiple_characters is

double_quote_multiple_characters)

True

>>> triple_quote_example = """this is a sentence written in triple quotes"""

>>> print(type(triple_quote_example))

<class 'str'>

Also check out if you can assign a sequence of characters or multiple characters to a variable. You
can assign both single quote sequences and double quote sequences.

Interestingly if you check the equivalence of one to the other using the keyword is, it returns True.

Take a look at assignment of strings using triple quotes and check if they belong to the class str as

well.

In the examples above, the function type is used to show the underlying class that the object will

belong to. Please note that all the variables that have been initiated with single, double, or triple
quotes are taken as string. You can use single and double quotes for a single line of characters.
Multiple lines are generally put in triple quotes.

String common methods

• Get the index of a substring in a string.

• # find the index of a "c" in a string "abcde"

• >>> "abcde".index("c")

2

2 is returned because the position of the individual letters in the strings is 0-indexed. So, index of "a"
in "abcde" is 0, that of "b" is 1, and so on.

>>> double_quote_character = "b"

>>> print(double_quote_character)

b

>>> print(type(double_quote_character))

<class 'str'>

Computer Programming using Python: by Ravinder Sheoran

145

>>> # for example, test if string "i" is present in string "pythonic"

at least once. "i" is present in the string. Therefore, the result

should be true.

>>> "i" in "pythonic"

True

>>> # as "x" is not present in the string "pythonic" the below test

should return false

>>> "x" in "pythonic" # "x" is not present in "pythonic"

False

>>> # split the string "1 2 3" and return a list of the numbers.

>>> "1 2 3".split() # splitting

['1', '2', '3']

>>> “1:2:3”.split(“:”)

[‘1’, ‘2’, ‘3’]

• Test if a substring is a member of a larger string. This is done using the keyword in and

writing the test. The skeleton is shown below.

substring in string

• Join a list of strings using the join method. A list of strings is written by delimiting the
sequence with a comma ,, and enclosing the whole group with brackets [...]. For a more

detailed tutorial on lists head over to the python lists tutorial. You can join a list of strings by
giving the delimiter as the object on which the method join will act and the list of strings as

the argument.

• >>> # join a list of

1,2,3 as the list of

spaces between them.

• >>> combined_string

strings 1, 2, 3 with a space

strings. So, the result will

= " ".join(["1", "2", "3"])

as

be

a delimiter

the strings

and

with

'1 2 3'

• Break a string based on some rule. This takes in the string as the object on which the

method split is passed using the dot operator. Splitting takes a space as the default

parameter.

For example you can split a string based on the spaces between the individual values.

Or you can split a string based on a delimiter like :.

• Access individual characters in a string. Note the first element has index 0. You access the

first element with the index 0, second element with the index 1, and so on.

 • >>> lang = "python"

Computer Programming using Python: by Ravinder Sheoran

146

>>> print("I love %s in %s" % ("programming", "Python")) # templating

strings

'I love programming in Python'

>>> print("I love {programming} in

{python}".format(programming="programming", python="Python"))

'I love programming in Python'

Test truth value of empty string

>>> print(bool(""))

False

Test truth value of non-empty string "x"

>>> print(bool("x"))

True

• >>> print(lang[0])

• >>> print(lang[2]) # access the 3rd letter

• 't'

• >>> print(lang[-3]) # access the third letter from the end.

'h'

Formatting in String:

String object can be formatted. You can use %s as a formatter which will enable you to insert

different values into a string at runtime and thus format the string. The %s symbol is replaced by

whatever is passed to the string.

You can also use the keyword format. This will enable you to set your own formatters instead of %s.

Truth value testing of String

A string is considered to be true in Python if it is not an empty string. So, we get the following:

Python Control Structures - Loops and Conditionals

You can control the flow of logic in your code through various methods.

Basic control flows

Computer Programming using Python: by Ravinder Sheoran

147

for item in iterable: # you can place any list or tuple or string in place of

iterable

write your code here.

pass

>>> fruits = ["apples", "oranges", "mangoes"]

>>> for fruit in fruits:

... print(fruit)

...

apples

oranges

mangoes

>>> fruits = ["apples", "oranges", "mangoes"]

>>> for fruit in fruits:

• Selection (if statements)

• Iteration (for loops)

More advanced control flows

• Procedural Abstraction (functions)
• Recursion
• Concurrency
• Exception Handling and Speculation
• Nondeterminacy

In this tutorial you will come to know:

How to have sequential, selective and iterative flows in your code. This can be achieved using the
for loop. How to achieve procedural abstraction. This can be done by the use of functions.

Other topics like Recursion, Exception Handling, Concurrency will be discussed in later tutorials.

Loops

Working on items of the iterable

If you want to run an operation on a collection of items, then you can do it using for loops. The
skeleton for using the for loop is shown below.Note that the for statement line will end with a
colon : and the rest of the code block must be indented with a spacing of 4 spaces. An iterable is

any object that can be looped on such as list, tuple, string etc.

If you want to print an element of a list of fruits, you can write the following code to achieve that.

In the example above, note that items in the iterable (i.e fruits) will be assigned to the for loop
variable (i.e fruit) during the iteration process. So, we can access the item directly.

Computer Programming using Python: by Ravinder Sheoran

148

>>> fruits = ["apples", "oranges", "mangoes"]

>>> for index, fruit in enumerate(fruits):

... print("index is %s" % index)

... print("fruit is %s" % fruit)

... print("###########################")

...

index is 0

fruit is apples

###########################

index is 1

fruit is oranges

###########################

index is 2

fruit is mangoes

###########################

while condition:

code_block

>>> fruits = ["apples", "oranges", "mangoes"] # get the list

>>> length = len(fruits) # get the length that will be needed for the while

condition

>>> i = 0 # initialise a counter

>>> while i < length: # give the condition

Looping on both indexes and items

In the previous section, index or the place value of the item in the iterable was not considered.
However, if you are interested in working with the index, then you can call the enumerate function

which returns a tuple of the index and the item. Taking the example above, you can print the name
of the fruit and the index of the list of fruits.

While statement

The while statement will execute a block of code as long as the condition is true. The skeleton of a
while block is shown below.

Note that similar to the for loop, the while statement ends with a colon : and the remaining code

block is indented by 4 spaces. We can implement the fruit example in the while block as well,
although the logic becomes a bit complicated than the for block.

...

...

...

...

...

string_size = 0

for alphabet in fruit:

string_size += 1

print("name of fruit: %s is has length %s" % (fruit, string_size))

name of fruit: apples is has length 6

name of fruit: oranges is has length 7

name of fruit: mangoes is has length 7

Computer Programming using Python: by Ravinder Sheoran

149

>>> for i in range(1,3):

... for j in range(1,3):

... print('%d x %d = %d' % (i, j, i*j))

...

1 x 1 = 1

1 x 2 = 2

2 x 1 = 2

2 x 2 = 4

if condition1:

code_block1

elif condition2:

code_block2

else:

code_block3

>>> num = 42

>>> if num == 42: # condition

... print("number is 42") # direction 1

...

number is 42

Nested for loops

You can have one or more nested for loops. For example, look at the following example where you
can print the multiplication table. The table is shown only for 1 and 2 to save space. You can try for
the remaining digits.

Selection and Python If statements

Creating if blocks

As a programmer, you will continually feel the need to control the flow of your program and let it
make runtime decisions based on some condition. The is done using the if syntax. To implement this
you can look at the if .. elif .. else syntax.

You can try the following example to understand better .

Adding an else block:

...

...

...

apples

oranges

mangoes

print(fruits[i]) # the code block

i += 1 # increment the counter

Computer Programming using Python: by Ravinder Sheoran

150

>>> num = 44

>>> if num == 42:

...

...

...

...

...

...

print("number is 42")

elif num == 44:

print("num is 44")

else:

print("num is neither 42 nor 44")

num is 44

>>> num = 42

>>> if num > 20:

...

...

if num < 50:

print("num between 20 and 50")

...

num between 20 and 50

Now, let us add an elif block to it as well and see what happens:

Nested if statements

You can have one or more nested if blocks inside if statements.

Lists

A list is a data-structure, or it can be considered a container that can be used to store multiple data
at once. The list will be ordered and there will be a definite count of it. The elements are indexed
according to a sequence and the indexing is done with 0 as the first index. Each element will have a
distinct place in the sequence and if the same value occurs multiple times in the sequence, each will
be considered separate and distinct element. A more detailed description on lists and associated
data-types are covered in this tutorial.

In this tutorial you will come to know of the about how to create python lists and the common
paradigms for a python list.

Lists are great if you want to preserve the sequence of the data and then iterate over them later for
various purposes. We will cover iterations and for loops in our tutorials on for loops.

>>> num = 43

>>> if num == 42:

...

...

...

...

print("number is 42")

else:

print("number if not 42")

number if not 42

Computer Programming using Python: by Ravinder Sheoran

151

>>> companies = ["hackerearth", "google", "facebook"]

>>> # get the first company name

>>> print(companies[0])

'hackerearth'

>>> # get the second company name

>>> print(companies[1])

'google'

>>> # get the third company name

>>> print(companies[2])

'facebook'

>>> # try to get the fourth company name

>>> # but this will return an error as only three names

>>> # have been defined.

>>> print(companies[3])

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

IndexError: list index out of range

>>> companies = [["hackerearth", "paytm"], ["tcs", "cts"]]

>>> print(companies)

[['hackerearth', 'paytm'], ['tcs', 'cts']]

How to create a list:

To create a list, you separate the elements with a comma and enclose them with a bracket “[]”.

For example, you can create a list of company names containing “hackerearth”, “google”,
“facebook”. This will preserve the order of the names.

Trying to access elements outside the range will give an error. You can create a two-dimensional
list. This is done by nesting a list inside another list. For example, you can group “hackerearth” and
“paytm” into one list and “tcs” and “cts” into another and group both the lists into another “master”
list.

Methods over Python Lists

Python lists support common methods that are commonly required while working with lists. The
methods change the list in place. (More on methods in the classes and objects tutorial). In case you
want to make some changes in the list and keep both the old list and the changed list, take a look at
the functions that are described after the methods.

How to add elements to the list:

• list.append(elem) - will add another element to the list at the end.

• >>> # create an empty list

• >>> companies = []

•

Computer Programming using Python: by Ravinder Sheoran

152

>>> # initialise a preliminary list of companies

>>> companies = ['hackerearth', 'google', 'facebook']

>>> # check what is there in position 2

>>> print(companies[2])

facebook

>>> # insert “airbnb” at position 2

>>> companies.insert(2, "airbnb")

>>> # print the new companies list

>>> print(companies)

['hackerearth', 'google', 'airbnb', 'facebook']

>>> # print the company name at position 2

>>> print(companies[2])

airbnb

>>> langs = ["haskell", "clojure", "apl"]

>>> langs.extend(["scala", "F#"])

>>> print(langs)

['haskell', 'clojure', 'apl', 'scala', 'F#']

• >>> # add “hackerearth” to companies

• >>> companies.append(“hackerearth”)

•

• >>> # add "google" to companies

• >>> companies.append("google")

•

• >>> # add "facebook" to companies

• >>> companies.append("facebook")

•

• >>> # print the items stored in companies

• >>> print(companies)

['hackerearth', 'google', 'facebook']

Note the items are printed in the order in which they youre inserted.

• list.insert(index, element) - will add another element to the list at the given index, shifting the

elements greater than the index one step to the right. In other words, the elements with the
index greater than the provided index will increase by one.

For example, you can create a list of companies ['hackerearth', 'google',

'facebook'] and insert “airbnb” in third position which is held by “facebook”.

• list.extend(another_list) - will add the elements in list 2 at the end of list.

For example, you can concatenate two lists ["haskell", "clojure", "apl"] and ["scala",

"F#"] to the same list langs.

Computer Programming using Python: by Ravinder Sheoran

153

>>> index_of_scala = langs.index("scala")

>>> print(index_of_scala)

3

>>> langs.remove("scala")

>>> print(langs)

['haskell', 'clojure', 'apl', 'F#']

>>> # pop the element at index 1

>>> some_numbers.pop(1)

4

>>> # check the present list

>>> print(some_numbers)

[5, 3]

• list.index(elem) - will give the index number of the element in the list.

For example, if you have a list of languages with elements ['haskell', 'clojure', 'apl',

'scala', 'F#'] and you want the index of “scala”, you can use the index method.

How to remove elements from the list:

• list.remove(elem) - will search for the first occurrence of the element in the list and will then
remove it.

For example, if you have a list of languages with elements ['haskell', 'clojure', 'apl',

'scala', 'F#'] and you want to remove scala, you can use the remove method.

• list.pop() - will remove the last element of the list. If the index is provided, then it will remove
the element at the particular index. For example, if you have a list [5, 4, 3, 1] and you

apply the method pop, it will return the last element 1 and the resulting list will not have it.

• >>> # assign a list to some_numbers

4, 3, 1]

list

• >>> some_numbers = [5,

•

• >>> # pop the list

• >>> some_numbers.pop()

• 1

•

• >>> # print the present

• >>> print(some_numbers)

[5, 4, 3]

Similarly, try to pop an element from a random index that exists in the list.

Computer Programming using Python: by Ravinder Sheoran

154

>>> # initialise an unsorted list some_numbers

>>> some_numbers = [4,3,5,1]

>>> # sort the list

>>> some_numbers.sort()

>>> # print the list to see if it is sorted.

>>> some_numbers

[1, 3, 4, 5]

>>> # initialise a list of numbers that

>>> some_numbers = [1, 3, 4, 5]

>>> # Try to reverse the list now

>>> some_numbers.reverse()

>>> # print the list to check if it is really reversed.

>>> print(some_numbers)

[5, 4, 3, 1]

>>> # you have a list of companies

>>> companies = ['hackerearth', 'google', 'facebook']

>>> # you want the length of the list

>>> print(len(companies))

3

Other useful list methods

• list.sort() - will sort the list in-place.

For example, if you have an unsorted list [4,3,5,1], you can sort it using the sort method.

• list.reverse() - will reverse the list in place

For example, if you have a list [1, 3, 4, 5] and you need to reverse it, you can call

the reverse method.

Functions over Python Lists:

• You use the function “len” to get the length of the list.

For example, if you have a list of companies ['hackerearth', 'google', 'facebook'] and

you want the list length, you can use the len function.

• If you use another function “enumerate” over a list, it gives us a nice construct to get both the
index and the value of the element in the list.

Computer Programming using Python: by Ravinder Sheoran

155

>>> # loop over the companies and print both the index as youll as the

name.

>>> for indx, name in enumerate(companies):

... print("Index is %s for company: %s" % (indx, name))

...

Index is 0 for company: hackerearth

Index is 1 for company: google

Index is 2 for company: facebook

>>> # initialise a list

>>> some_numbers = [4,3,5,1]

>>> # get the sorted list

>>> print(sorted(some_numbers))

[1, 3, 4, 5]

>>> # the original list remains unchanged

>>> print(some_numbers)

[4, 3, 5, 1]

For example, you have the list of companies ['hackerearth', 'google', 'facebook'] and

you want the index, along with the items in the list, you can use the enumerate function.

In this example, you use the for loop. For loops are pretty common in all programming languages
that support procedural constructs. You can head over to A complete theoretical reference to loops
in C to have a deeper understanding of for loops. Also look at the tutorial on loops in Python in
Python Control Structures tutorial.

• sorted function will sort over the list

Similar to the sort method, you can also use the sorted function which also sorts the list. The
difference is that it returns the sorted list, while the sort method sorts the list in place. So this function
can be used when you want to preserve the original list as well.

Python Dictionaries

A dictionary is a set of unordered key, value pairs. In a dictionary, the keys must be unique and they
are stored in an unordered manner.

In this tutorial you will learn the basics of how to use the Python dictionary.

By the end of the tutorial you will be able to - Create Dictionaries - Get values in a Dictionary - Add
and delete elements in a Dictionary - To and For Loops in a Dictionary

Creating a Dictionary

Computer Programming using Python: by Ravinder Sheoran

156

>>> person_information = {'city': 'San Francisco', 'name': 'Sam', "food":

"shrimps"}

>>> type(person1_information)

<class 'dict'>

>>> print(person1_information)

{'city': 'San Francisco', 'name': 'Sam', 'food': 'shrimps'}

>>> create a dictionary person1_information

>>> person1_information = {'city': 'San Francisco', 'name': 'Sam', "food":

"shrimps"}

>>> print the dictionary

>>> print(person1_information["city"])

San Francisco

>>> # create a small dictionary

>>> alphabets = {1: ‘a’}

>>> # get the value with key 1

>>> print(alphabets.get(1))

'a'

>>> # get the value with key 2. Pass “default” as default. Since key 2 does

not exist, you get “default” as the return value.

>>> print(alphabets.get(2, "default"))

'default'

>>> # get the value with key 2 through direct referencing

>>> print(alphabets[2])

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

Let’s try to build a profile of three people using dictionaries. To do that you separate the key-value
pairs by a colon(“:”). The keys would need to be of an immutable type, i.e., data-types for which the
keys cannot be changed at runtime such as int, string, tuple, etc. The values can be of any type.
Individual pairs will be separated by a comma(“,”) and the whole thing will be enclosed in curly
braces({...}).

For example, you can have the fields “city”, “name,” and “food” for keys in a dictionary and assign
the key,value pairs to the dictionary variable person1_information.

Get the values in a Dictionary

To get the values of a dictionary from the keys, you can directly reference the keys. To do this, you
enclose the key in brackets [...] after writing the variable name of the dictionary.

So, in the following example, a dictionary is initialized with keys “city”, “name,” and “food” and you
can retrieve the value corresponding to the key “city.”

You can also use the get method to retrieve the values in a dict. The only difference is that in the get
method, you can set a default value. In direct referencing, if the key is not present, the interpreter
throws KeyError.

Computer Programming using Python: by Ravinder Sheoran

157

>>> person1_information = {'city': 'San Francisco', 'name': 'Sam', "food":

"shrimps"}

>>> for k, v in person1_information.items():

... print("key is: %s" % k)

... print("value is: %s" % v)

... print("###########################")

...

key is: food

value is: shrimps

###########################

key is: city

value is: San Francisco

###########################

key is: name

value is: Sam

###########################

>>> # initialize an empty dictionary

>>> person1_information = {}

>>> # add the key, value information with key “city”

>>> person1_information["city"] = "San Francisco"

>>> # print the present person1_information

>>> print(person1_information)

{'city': 'San Francisco'}

>>> # add another key, value information with key “name”

>>> person1_information["name"] = "Sam"

>>> # print the present dictionary

>>> print(person1_information)

{'city': 'San Francisco', 'name': 'Sam'}

>>> # add another key, value information with key “food”

>>> person1_information["food"] = "shrimps"

>>> # print the present dictionary

>>> print(person1_information)

Looping over dictionary

Say, you got a dictionary, and you want to print the keys and values in it. Note that the key-
words for and in are used which are used when you try to loop over something. To learn more

about looping please look into tutorial on looping.

Add elements to a dictionary

You can add elements by updating the dictionary with a new key and then assigning the value to a
new key.

KeyError: 2

Computer Programming using Python: by Ravinder Sheoran

158

>>> # create a small dictionary

>>> person1_information = {'city': 'San Francisco'}

>>> # print it and check the present elements in the dictionary

>>> print(person1_information)

{'city': 'San Francisco'}

>>> # have a different dictionary

>>> remaining_information = {'name': 'Sam', "food": "shrimps"}

>>> # add the second dictionary remaining_information to

personal1_information using the update method

>>> person1_information.update(remaining_information)

>>> # print the current dictionary

>>> print(person1_information)

{'city': 'San Francisco', 'name': 'Sam', 'food': 'shrimps'}

>>> # initialise a dictionary with the keys “city”, “name”, “food”

>>> person1_information = {'city': 'San Francisco', 'name': 'Sam', "food":

"shrimps"}

>>> # delete the key, value pair with the key “food”

>>> del person1_information["food"]

>>> # print the present personal1_information. Note that the key, value pair

“food”: “shrimps” is not there anymore.

>>> print(person1_information)

{'city': 'San Francisco', 'name': 'Sam'}

>>> # initialise a dictionary with the keys “city”, “name”, “food”

>>> person1_information = {'city': 'San Francisco', 'name': 'Sam', "food":

"shrimps"}

>>> # deleting a non existent key gives key error.

>>> del person1_information["non_existent_key"]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

KeyError: 'non_existent_key'

Or you can combine two dictionaries to get a larger dictionary using the update method.

Delete elements of a dictionary

To delete a key, value pair in a dictionary, you can use the del method.

A disadvantage is that it gives KeyError if you try to delete a nonexistent key.

{'city': 'San Francisco', 'name': 'Sam', 'food': 'shrimps'}

Computer Programming using Python: by Ravinder Sheoran

159

>>> # initialise a dictionary with key, value pairs

>>> person1_information = {'city': 'San Francisco', 'name': 'Sam', "food":

"shrimps"}

>>> # remove a key, value pair with key “food” and default value None

>>> print(person1_information.pop("food", None))

'Shrimps'

>>> # print the updated dictionary. Note that the key “food” is not present

anymore

>>> print(person1_information)

{'city': 'San Francisco', 'name': 'Sam'}

>>> # try to delete a nonexistent key. This will return None as None is given

as the default value.

>>> print(person1_information.pop("food", None))

None

>>> alphabets = {1: ‘a’}

>>> alphabets.has_key(1)

True

>>> alphabets.has_key(2)

False

>>> call = {'sachin': 4098, 'guido': 4139}

>>> call["snape"] = 7663

>>> call

{'snape': 7663, 'sachin': 4098, 'guido': 4139}

So, instead of the del statement you can use the pop method. This method takes in the key as the

parameter. As a second argument, you can pass the default value if the key is not present.

More facts about the Python dictionary

You can test the presence of a key using the has_key method.

A dictionary in Python doesn't preserve the order. Hence, we get the following:

Sets

A set is an unordered collection data type with no duplicate elements. Sets are iterable and mutable.
The elements appear in an arbitrary order when sets are iterated.

Sets are commonly used for membership testing, removing duplicates entries, and also for
operations such as intersection, union, and set difference.

Computer Programming using Python: by Ravinder Sheoran

160

>>> #creating an empty set

>>> setA = set()

>>> print(setA)

set()

>>> # creating a set with a string.

>>> # since a string is an iterable, this will succeed.

>>> setA = set("HackerEarth")

>>> print(setA)

{'h', 'H', 't', 'k', 'e', 'c', 'E', 'a', 'r'}

>>> # creating a set with a list

>>> setA = set(["C", “C++”, “Python”])

>>> print(setA)

{'C', 'Python', 'C++'}

>>> # creating a set with a list of numbers

>>> # there are some duplicates in it.

>>> setA = set([1, 2, 3, 4, 5, 6, 7, 7, 7])

>>> print(setA)

{1, 2, 3, 4, 5, 6, 7}

>>> # creating a set with a string. The string has some repeated characters.

>>> myString = 'foobar'

>>> setA = set(myString)

>>> print(setA)

{'r', 'a', 'b', 'f', 'o'}

>>> setA = set([1, 2, 3, 4, 5, 6, 7, 7, 7])

>>> print(setA)

{1, 2, 3, 4, 5, 6, 7}

In this tutorial you will learn how to create a set and and the common paradigms for a set in Python.

How to create Sets

Sets can be created by calling the built-in set() function with a sequence or another iterable object.

set(object) iterates over the elements present in object and adds all the unique elements to the set.

Next you will learn about different operations available for Python Sets.

For all set operations, the set created below which is a set of integers. There are some integers that
are repeated here. :

Methods to change a set

How to add elements to a set

Computer Programming using Python: by Ravinder Sheoran

161

>>> setA.add(8)

>>> print(setA)

{1, 2, 3, 4, 5, 6, 7, 8}

>>> setA.add((9, 10))

>>> print(setA)

{1, 2, 3, 4, 5, 6, 7, 8, (9, 10)}

>>> # pass a list with elements 11 and 12

>>> setA.update([11, 12])

>>> # check if setA is updated with the elements.

>>> print(setA)

{1, 2, 3, 4, 5, 6, 7, 8, 11, 12, (9, 10)}

>>> setA.update([12, 14], {15, 16})

>>> print(setA)

{1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 14, 15, (9, 10), 16}

>>> # removes element 7 from set

>>> setA.discard(7)

>>> print(setA)

• Python set add(element)

This will add element to a set:

For example, you can add the element 8 to the set 8

Or you can add a tuple (9, 10) to the setA and the new set will consist of the tuple as well.

• Python set update(element)

Adds element to list; it is an in-place set union operation.

For example you can pass a list to the update method and this will update the setA with the
elements.

Similarly you can update with a list and a new set as shown below

Using add, elements can be added but not another iterable like set, list, or tuple. Update can be
used to add iterable or iterables of hashable elements.

Methods to remove elements from a set

Python set discard(element) and remove(element) Used to remove element from the set

Computer Programming using Python: by Ravinder Sheoran

162

>>> # discard doesn’t do anything is value to be discarded is not present

>>> setA.discard(19)

>>> print(setA)

{1, 2, 3, 4, 5, 6, 11, 12, 14, 15, (9, 10), 16}

>>> # this operation fails with an exception being raised

>>> setA.remove(19)

Traceback (most recent call last):

File "python", line 1, in <module>

KeyError: 19

Both discard and remove take a single argument, the element to be deleted from the set. If the value
is not present, discard() does not do anything. Whereas, remove will raise a KeyError exception.

Other useful set methods

• Python set copy() Creates a shallow copy of the set with which it is called

• >>> shallow_copy_of_setA = setA.copy()

• >>> print(shallow_copy_of_setA)

{1, 2, 3, 4, 5, 6, 11, 12, 14, 15, (9, 10), 16}

Using assignment here instead of copy() will create a pointer to the already existing set.

• Python set clear() Will remove all elements from set

• >>> # clear the set shallow_copy_of_setA created before using copy()

operation

• >>> shallow_copy_of_setA.clear()

• >>> print(shallow_copy_of_setA)

set()

• Python set pop() Removes an arbitrary set element

• >>> # popping an element from setA

• >>> setA.pop()

• 1

• >>> # pop raises a KeyError exception if the set is empty

• >>> shallow_copy_of_setA.pop()

{1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 15, (9, 10), 16}

>>> # removes element 8 from set

>>> setA.remove(8)

>>> print(setA)

{1, 2, 3, 4, 5, 6, 11, 12, 14, 15, (9, 10), 16}

Computer Programming using Python: by Ravinder Sheoran

163

• Traceback (most recent call last):

• File "python", line 1, in <module>

KeyError: 'pop from an empty set'

Set Operations

• Set Intersection using intersection(s) Returns element present in both sets; this can also be
achieved using the ampersand operator (&).

• >>> # create a new set setB

• >>> setB= set()

•

• >>> # update setB with values

• >>> setB.update([1, 2, 3, 4, 5, 10, 15, 22])

• >>> print(setB)

• {1, 2, 3, 4, 5, 10, 15, 22}

•

• >>> # print a new set with the values present in both setA and setB

• >>> print(setA & setB)

• {2, 3, 4, 5, 15}

•

• >>> # above operation and using method name intersection shows same

results

• >>> setA.intersection(setB)

{2, 3, 4, 5, 15}

• Set Difference using difference() Returns the difference of two sets; “-” operator can also be

used to find the set difference.

• >>> # print a new set with values present in setA but not in setB

• >>> setA.difference(setB)

• {6, 11, 12, 14, (9, 10), 16}

•

• >>> # this returns empty set

• >>> setB.difference(setA)

set()

setB is a proper subset of setA to setB - setA is empty set.

Other Set Operations

• Python set isdisjoint() Returns true if intersection of sets is empty otherwise false

 • >>> # returns false as both have common elements

Computer Programming using Python: by Ravinder Sheoran

164

>>> # remove few elements to make setB a subset of setA

>>> setB.remove(1)

>>> setB.remove(10)

>>> setB.remove(22)

>>> # check the values present in setB now

>>> print(setB)

{2, 3, 4, 5, 15}

• >>> setA.isdisjoint(setB)

• False

•

• >>> # create a new empty set setC

• >>> setC = set()

• >>> # update setC with values

• >>> setC.update([100, 99])

•

• >>> # returns true as setA and setC has no elements in common

• >>> setA.disjoint(setC)

True

• Python set difference_update() setA.difference_update(setB) removes all elements of y from
setA; ‘-=’ can be used in place of the difference_update method.

• >>>

• >>>

update setA by removing elements

setA.difference_update(setB)

present in setB from setA

• >>> # check the result set

• >>> print(setA)

{6, 11, 12, 14, (9, 10), 16}

Similarly, setA.intersection_update(setB) removes elements from setA which are not present in the
intersection set of setA and setB. ‘&=’ can be used in place of the intersection_update method.

• Python set issubset() and issuperset() setA.issubset(setB) returns True if setA is subset of

setB, False if not. “<=” operator can be used to test for issubset. To check for proper subset
“<” is used.

• >>> # check if setA is a subset of setB

• >>> setA.issubset(setB)

• False

• >>> # check if set B is a subset of setA

• >>> setB.issubset(setA)

False

Let’s make setB a subset of setA by removing values 1, 10, and 22.

Computer Programming using Python: by Ravinder Sheoran

165

Python Expressions:

Expressions are representations of value. They are different from statement in the fact that
statements do something while expressions are representation of value. For example any string is
also an expressions since it represents the value of the string as well.

Python has some advanced constructs through which you can represent values and hence these
constructs are also called expressions.

In this tutorial you will get to know about:

1. What are expressions in Python
2. How to construct expressions.

How to create an expressions

Python expressions only contain identifiers, literals, and operators. So, what are these?

Identifiers: Any name that is used to define a class, function, variable module, or object is an
identifier. Literals: These are language-independent terms in Python and should exist independently
in any programming language. In Python, there are the string literals, byte literals, integer literals,
floating point literals, and imaginary literals.Operators: In Python you can implement the following
operations using the corresponding tokens.

Operator

Token

add

+

subtract

-

>>> # issubset now returns true

>>> setB.issubset(setA)

True

>>> setB < setA

True

>>> #setA now becomes a superset of setB

>>> setA.issuperset(setB)

True

Computer Programming using Python: by Ravinder Sheoran

166

Operator

Token

multiply

*

power

**

Integer Division

/

remainder

%

decorator

@

Binary left shift

<<

Binary right shift

>>

and

&

or

\

Binary Xor

^

Binary ones complement

~

Less than

<

Greater than

>

Computer Programming using Python: by Ravinder Sheoran

167

[compute(var) for var in iterable]

>>> [x for x in range(10)]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

{ k, v for k in iterable }

>>> {x:x**2 for x in range(5)}

{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

Operator

Token

Less than or equal to

<=

Greater than or equal to

>=

Check equality

==

Check not equal

!=

Following are a few types of python expressions:

List comprehension

The syntax for list comprehension is shown below:

For example, the following code will get all the number within 10 and put them in a list.

Dictionary comprehension

This is the same as list comprehension but will use curly braces:

For example, the following code will get all the numbers within 5 as the keys and will keep the
corresponding squares of those numbers as the values.

Computer Programming using Python: by Ravinder Sheoran

168

(compute(var) for var in iterable)

>>> (x for x in range(10))

<generator object <genexpr> at 0x7fec47aee870>

>>> list(x for x in range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

true_value if Condition else false_value

>>> x = "1" if True else "2"

>>> x

'1'

Generator expression

The syntax for generator expression is shown below:

For example, the following code will initialize a generator object that returns the values within 10
when the object is called.

Conditional Expressions

You can use the following construct for one-liner conditions:

Example:

