LESSON PLAN

NAME OF FACULTY: MRS. SUMAN CHAUDHARY

DISCIPLINE: COMPUTER ENGINEERING

SEMESTER: 3rd

SUBJECT: DIGITAL ELECTRONICS

LESSON PLAN DURATION: 16 WEEKS

WORK LOAD (LECTURE/ PRACTICAL): LECTURES-3, PRACTICALS -3

WEEK 1st		THEORY	PRACTICAL		
	LECTURE DAY	TOPIC	PRACTICAL DAY/PERIOD	TOPIC	
	1	UNIT 1 Introduction	1-3	Introduction	
	2	Distinction between analog and digital signal			
	3	Applications and advantages of digital signals			
2nd	1	UNIT 2 Number System	1-3	Introduction	
		Binary, octal and hexadecimal number			
		system: conversion from decimal and			
		hexadecimal to binary vice-versa.			
	2	Binary, octal and hexadecimal number			
		system: conversion from decimal and			
		hexadecimal to binary and vice-versa.			
	3	Binary addition and subtraction including			
		binary points. 1's and 2's complement			
		method of addition/subtraction.			
3rd	1	UNIT 3 Codes and Parity	1-3	Introduction	
		Concept of code, weighted and non-			
		weighted codes			
	2	Examples of 8421, BCD, excess-3 and Gray			
		code			
	3	Concept of parity, single and double parity			
		and error detection			
4th	3	UNIT 4 Logic Gates and Families	1-3	Verification and	
		Concept of negative and positive logic		interpretation of truth	
	1	Definition, symbols and truth tables of NOT,		tables for AND, OR, NOT	
		AND		NAND, NOR and Exclusive	
	2	OR, NAND, NOR, EXOR Gates		OR (EXOR) and Exclusive	
				NOR(EXNOR) gates	
5 th	1	NAND and NOR as universal gates	1-3		
	2	Introduction to TTL and CMOS logic families			
	3	TEST			
6 th	1	UNIT 5 Logic Simplification	1-3	Realization of logic	
		Postulates of Boolean algebra, De Morgan's		functions with the help of	
		Theorems		NAND or NOR gate	
	2	Implementation of Boolean (logic) equation			
		with gates			
	3	Karnaugh map (upto 4 variables)			
7th	1	simple application in developing	1-3		
		combinational logic circuits			
	2	UNIT 6 Arithmetic circuits	1		

		Half adder and Full adder circuit		
	3	design and implementation		
8th	1	4 bit adder circuit	1-3	To design a half adder
	2	UNIT 7 Decoders, Multiplexeres, De		using XOR and NAND
		Multiplexeres and Encoder		gates and verification of
		Four bit decoder circuits for 7 segment		its operation
		display		
	3	decoder/driver ICs		
9th	1	Basic functions and block diagram of MUX	1-3	
	2	DEMUX with different ICs		
	3	Basic functions and block diagram of		
		Encoder		
10th	1	UNIT 8 Latches and flip flops	1-3	Construction of a full
		Concept and types of latch with their		adder circuit using XOR
		working and applications		and NAND gates and
	2	Operation using waveforms and truth tables		verify its operation
		of RS flip flops		
aath	3	T, D, Master/Slave JK flip flops	1.2	
11 th	1	Difference between a latch and a flip flop	1-3	
	2	UNIT 9 Counters		
		Introduction to Asynchronous and Synchronous counters		
	3	Asynchronous and Synchronous counters		
12th	1	Binary counters	1-3	Verification of truth table
12th	2	Divide by N ripple counters,	1-3	for positive edge
	3	Decade counter, Ring counter		triggered, negative edge
		because counter, rung counter		triggered, level triggered
				IC flip-flops (At least one
				IC each of D latch , D flip-
13th	1	LINUT 10 Chift Dogistor	1.2	flop, JK flip-flops).
13th	1	UNIT 10 Shift Register Introduction and basic concepts including	1-3	Verification of truth table for encoder and decoder
		shift left and shift right.		ICs, Mux and DeMux
	2	Serial in parallel out, serial in serial out		ics, iviax and beiviax
	3	Parallel in serial out, parallel in parallel out		
14th	1	Universal shift register	1-3	To design a 4 bit SISO,
	2	UNIT 11 A/D and D/A Converters	1 3	SIPO, PISO, PIPO shift
	-	Working principle of A/D and D/A converters		registers using JK/D flip
	3	Brief idea about different techniques of A/D		flops and verification of
		conversion and study of : Stair step Ramp		their operation
		A/D converter		·
15th	1	Dual Slope A/D converter	1-3	To design a 4 bit ring
		Successive Approximation A/D Converter		counter and verify its
	2	Detail study of : Binary Weighted D/A		operation.
		converter, R/2R ladder D/A converter		
	3	Applications of A/D and D/A converter		
16th	1	UNIT 12 Semiconductor Memories	1-3	Use of Asynchronous
		Memory organization, classification of		Counter ICs (7490 or
		semiconductor memories (RAM, ROM,		7493)
		PROM, EPROM,		
	2	EEPROM), static and dynamic RAM,		
		introduction to 74181 ALU IC		
	3	REVISION		