Lesson Plan

Discipline: Mechanical

Semester: 4th Mechanical

Subject: Materials and Metallurgy

Lesson Plan Duration: 15 weeks

Work Load (Lecture/ Practical) per week (in hours): Lecturers- 04, Practicals- 02

Week	Theory		Practical		
	Lectu	Topic (including assignment	Practica	Торіс	
	re	/ test)	l Day		
	day				
1 st	1 st	Material, Engineering materials.	1 st	Classification of about 25	
	2 nd	History of material origin, Scope of Material Science.		•	ns of materials/ parts into Metals and non metals
	3 rd	Overview of different engineering materials and applications	2 nd	ii)	Metals and alloys
	4 th	Importance, Classification of materials, Difference b/w metals and non- metals.			
2 nd	1 st	Physical and mechanical properties of various materials.	1 st	iii)	Ferrous and non ferrous metals
	2 nd	Present and future needs of materials.			
	3 rd	Various issues of Material Usage- Economical, Environment and Social.	2 nd	iv)	Ferrous and non ferrous alloys.
	4 th	Overview of Biomaterials and Semiconducting materials.			
3 rd	1 st	Fundamentals: Crystalline solid and amorphous solid.	1 st	Given a set of specimen of metals and alloys; identify and indicate the various properties possessed by them.	
	2 nd	Unit cell, space lattice, Arrangement of atoms in simple cubic crystals, BCC, FCC and HCP Crystals.			
	3 rd	No. of atoms per unit cell, Atomic packing factor, coordination number.	2 nd	Given a set of specimen of metals and alloys; identify and indicate the various properties possessed by them.	
	4 th	Defects/ Imperfections, types and effects in solid materials.			

4 th	1 st	Deformation: overview of deformation behavior and its mechanisms.	1 st	a) Study of heat treatment furnace.
	2 nd 3 rd	Elastic and plastic deformation Behaviour of material under load and stress- strain curve.	2 nd	a) Study of heat treatment furnace.
	4 th	Failure Mechanisms: overview of failure modes, fracture, fatigue and creep.	-	
5 th	1 st	Metallurgy: Introduction , cooling curves of pure metals, dendritic solidification of metals.	1 st	b) Study of a thermocouple/ pyrometer
	2 nd	Effect of grain size o mechanical properties		
	3 rd	Binary alloys, Thermal equilibrium diagrams.	2 nd	c) Study of a thermocouple/
	4 th	Lever rule, solid solution alloys.		pyrometer
6 th	1 st 2 nd	Ferrous Metals: Different iron ores flow diagram for production of iron and steel.	1 st	Study of a metallurgical microscope and a specimen polishing machine.
	3 rd	Allotropic forms of iron- alpha, delta, gamma.	2 nd	Study of a metallurgical microscope and a
	4 th	Basic process of manufacturing of pig iron and steel- making.		specimen polishing machine.
7 th	1 st	Cast Iron: Properties, types of cast Iron	1 st	To prepare specimens of following materials for
	2 nd	Manufacture and their use.		microscopic examination and to Examine the microstructure of the specimens of following materials. i) Brass ii) copper iii) Cast Iron iv) Mild Steel v)HSS vi) Aluminum
	3 rd	Steels: Plain carbon steels and alloy steel.	2 nd	To prepare specimens of following materials for
	4 th	Classification of plain carbon steels,		microscopic examination and to Examine the microstructure of the specimens of following materials. i) Brass ii) copper

				iii) Cast Iron iv) Mild Steel v)HSS vi) Aluminum
8 th	1 st	Properties of different types of plain carbon steels.	1 st	To anneal a given specimen and find out difference in hardness as a result of annealing.
	2 nd	Application of different types of plain carbon steels.		
	3 rd	Effect of various alloying elements on properties of steel.	2 nd	To anneal a given specimen and find out
	4 th	Uses of alloy steels.		difference in hardness as a result of annealing.
9 th	1 st	Non ferrous Materials: Properties	1 st	To normalize a given
	2 nd	Uses of copper		specimen and to find out the difference in hardness as a result of normalizing.
	3 rd	Aluminum and their alloys.	2 nd	To normalize a given
	4 th	Definition and objectives of heat		specimen and to find out
		treatment.		the difference in hardness as a result of normalizing.
10 th	1 st	Iron carbon equilibrium diagram	1 st	To harden and temper a
-	2 nd	Different microstructures of iron		specimen and to find out
		and steel.		the difference in hardness due to tempering.
	3 rd	Formation and decomposition of Austenite	2 nd	To harden and temper a specimen and to find out
	4 th	Martensitic Transformation.		the difference in hardness due to tempering.
11 th	1 st	Various heat treatment processes- hardening.		
	2 nd	Tempering, Annealing, normalizing.		
	3 rd	Surface hardening, carburizing.		
	4 th	Nitriding, cyaniding. Hardenability of Steels.		
12 th	1 st	Types of heat treatment furnaces.		
	2 nd	Measurement of temperature of furnaces.		
	3 rd	Important of plastics, Classification- Thermoplastic and thermoset.		
	4 th	Plastic and their uses.		

4 ath	4 st		
13 th	1 st	Various trade names of plastics,	
		plastic coatings, food grade	
		plastics.	
	2 nd	Applications of plastics in	
		automobile and domestic use.	
	3 rd	Rubber classification- Natural and	
		synthetic. Selection of rubber.	
	4 th	Heat Insulating materials-	
		Asbestos, glasswool, thermocole.	
14 th	1 st	Ceramics- Classification,	
		Properties, applications.	
	2 nd	Refractory materials- Dolomite,	
		porcelain.	
	3 rd	Glass- Soda lime, borosil.	
	4 th	Joining materials/ Adhesives-	
		Classification, Properties and	
		applications.	
15 th	1 st	Abrasive materials. Composites-	
		Classification, properties,	
		applications.	
	2 nd	Materials for bearing metals.	
	3 rd	Materials for Nuclear Energy.	
	4 th	Smart materials- properties and	1
		applications.	