LESSON PLAN

Name of Faculty: MR. JITENDER & MR.VISHNU GOYAL & MR. VIKAS

Discipline: Mechanical Engineering

Semester: 1ST

Subject: Engineering Graphics

Duration: 15 Weeks

Teaching Load: 6 Hours practical/week

Week	Day	Торіс
	Lecture	
1	1	UNIT-I
		Introduction to Engineering Drawing and Graphics: Introduction to Engineering
		Drawing and Graphics, Symbols and conventions-Conventions of Engineering
		Materials
	2	Sectional Breaks and Conventional lines, Civil Engineering Sanitary fitting symbols,
		Electrical fitting symbols for domestic interior installations.
2	1	Geometrical construction-geometrical figures such as triangles, rectangles,
		circles, ellipses and curves, hexagons, pentagons bisecting a line and arc, division
		of line and circle with the help of drawing instruments.
	2	Technical Lettering of Alphabet and Numerals: Definition and classification of
		lettering, Free hand (of height of 5,8,12 mm) and instrumental lettering (of height
		20 to 35 mm) : upper case and lower case, single and double stroke
3	1	Vertical and inclined (Gothic lettering) at 75 degree to horizontal and with
		suitable height to width ratio 7:4.
	2	Dimensioning: Necessity of dimensioning, method and principles of dimensioning
		(mainly theoretical instructions).
4	1	Dimensioning of overall sizes, circles, threaded holes, chamfered surfaces, angles,
		tapered surfaces,
	2	Holes, equally spaced on P.C.D., countersunk holes, counter bored holes,
		cylindrical parts, narrow spaces and gaps, radii, curves and arches.
5	1	Scales: Scales – Needs and importance (theoretical instructions), Type of scales,
		Definition of Representative Fraction (R.F.) and Length of Scale.
	2	To draw/construct plain and diagonal scales.
6	1	Doubt Session
	2	1 st sessional
7	1	UNIT II
		Orthographic Projections: Theory of orthographic projections (Elaborate
		theoretical instructions). Three views of orthographic projections of different
		objects of given pictorial view of a block in 1st and 3rd angle.
	2	Projection of Points in different quadrant, Projection of Straight Line (1st angle),
		Line parallel to both the planes
8	1	Line perpendicular to any one of the reference plane and parallel to others, Line
		inclined to any one of the references and parallel to another plane.

	2	Projection of Plane – Different lamina like square rectangular, triangular, circle
		and Hexagonal pentagon. Trace of planes (HT and VT). Identification of surfaces.
9	1	Sectioning: Importance and salient features, Drawing of full section, half section,
		partial or broken out sections, Offset sections, revolved sections and removed
		sections (theoretical only).
	2	Orthographic sectional views of different objects.
10	1	Doubt session
	2	2 nd sessional
11	1	UNIT III
		Introduction of projection of right solids such as prism & pyramid (square,
		Pentagon, Hexagonal) cube, cone & cylinder (Axes perpendicular to H.P and
		parallel to V.P.) Introduction of sections of right solids - Section planes, Sections of
		Hexagonal prism, pentagon pyramid, cylinder and cone (Section plane parallel to
		anyone reference planes and perpendicular to V.P. and inclined to H.P.)
	2	Development of Surfaces – Development of lateral surfaces of right solids like
		cone, cylinder, pentagonal prism, pyramid and hexagonal pyramid (Simple
		problems)
12	1	UNIT IV: Isometric Views
		Fundamentals of isometric projections and isometric scale. Isometric views of
		different laminas like circle, pentagon and hexagon.
	2	Isometric views of different regular solids like cylinder, cone, cube, cuboid,
		pyramid and prism. Isometric views from given different orthographic
		projections(front, side and top view)
13	1	UNIT-V: Introduction to AutoCAD
		Basic introduction and operational instructions of various commands in AutoCAD.
		At least two sheets of different objects on AutoCAD (given pictorial/isometric
		view of a block).
	2	AutoCAD skill of student is evaluated in internal assessment only not in external
		exam.
14	1	Doubt session
	2	3 rd sessional
15	1	Revision
	2	Revision