LESSON PLAN

Name of faculty: Vishnu Goyal

Discipline: Mechanical Engineering

Semester: 3rd

Subject: Strength of Material

Lesson Plan Duration: 15 Weeks

Work Load (Lecture/Practical) per week: (3 Lectures & 2 Practicals)

WEEK	LECTURE DAY	THEORY	PRACTICAL
		Topic (Including Assignment/test)	Topic
1 st week	1 st day	Unit 1: Stresses and Strains	1.Tensile test on mild steel bar
		Basics concept of load, stress and strain	
	2 nd day	Stress and strain	
	3 rd day	Tensile, compressive, shear stress	
2 nd week	1 st day	Linear and Lateral strain	2.Tensile test on Aluminum bar
	2 nd day	Shear strain	
	3 rd day	Volumetric strain, Concept of elasticity, Elastic limit, limit of proportionality	
3 rd week	1 st day	Hooks law	Revision of practical no 1
	2 nd day	Elastic constants	
	3 rd day	Nominal strain, Stress strain curve for ductile and brittle material	
4 th week	1 st day	Yield point, plastic stage, ultimate and breakingstress, Percentage elongation, proof and working stress	Revision of practical 2
	2 nd day	Factor of safety, Poison's ratio, Thermalstress and strain	
	3 rd day	Introduction to principal stresses, Longitudinal and circumferential stresses In seamless thin walled cylindrical shells	

5 th week	1 st day	Resilience: Strain energy, resilience, Proof resilienceand modulus of resilience	3. Bending tests on a steel bar
	2 nd day	Strain energy due to direct stress and shear stress	
	3 rd day	Stress due to gradual, sudden and falling load	
6 th week	1 st day	Doubts Session , ASSIGNMENT - 1	4. Bending tests on wooden bar
-	2 nd day	1 ST SESSIONAL TEST	
	3 rd day	Unit 2: Moment of Inertia: concept of moment of inertia, Theorem of perpendicular and parallel axis	
7 th week	1 st day	Second moment of area of rectangle, triangle, circle and numerical	5. Impact test on IZOD test
	2 nd day	Second moment of area for L,T,I sections and Section modulus.	
	3 rd day	Unit 3: Bending Moment and Shearing Force Concept of various types of beams and loading	
8 th week	1 st day	Concept of end supports, hinged and fixed, Concept of bending moment and shear force	6. Impact test on CHARPY test
	2 nd day	B.M and S.F diagram for cantilever beam, B.M. and S.F diagram for simply supportedbeam	
-	3 rd day	B.M and S.F diagram of cantilever and simply supported beams with or without overhang and U.D.L	
9 th week	1 st day	Unit 4: Bending Stresses Concepts of bending stresses	7. Torsion test of solid specimen of circular section of different metals for
	2 nd day	Theory of simple bending, Derivation of bending equation.	determining modulus of rigidity

	3 rd day	Concept of moment of resistance, Bending stress diagram, section modulus for rectangles	
10 th week	1 st day	Section modulus for circular and symmetrical I- section, Bending stress in beamsof rectangular crossection	Revision of practical 7
	2 nd day	Bending stress in circular and T section, ASSIGNMENT- 2	
	3 rd day	2 ND SESSIONAL TEST	
11 th week	1 st day	Columns: Concept of column, modes of failure, Types ofcolumns, modes of failure of column	8.To plot a graph between load and extension and to determine the stiffness of a
	2 nd day	Buckling load, crushing load, slenderness ratio, Effective length, end restraints	helical spring
	3 rd day	Factor effecting strength of a column, Strengthof column by Euler formula without derivation	
12 th week	1 st day	Rankine-Gourdan formula, Unit 5: Torsion: Concept of torsion, difference between torque and torsion	Revision of practical 8
	2 nd day	Derivation of torsion equation, Use of torsionequation for circular shaft (solid and hollow)	
	3 rd day	Comparison of solid and hollow shaft	
13 th week	1 st day	Power transmitted by shaft, Concept of mean and maximum torque	9. Hardness test on different material
	2 nd day	Springs: Closed coil helical springs subjected to axial load	
	3 rd day	Calculation of stress deformation	
14 th week	1 st day	Stiffness, angle of twist, strain energy, Determination of number of plates of laminated springs	Revision of practical 9
	2 nd day	Numerical, ASSIGNMENT - 3	
	3 rd day	3 RD SESSIONAL TEST	

15 th week	1 st day	Revision	Revision of practical 9 on another metal
	2 nd day	Revision	
	3 rd day	Revision	