
Electrical Engineering Department,

Govt. Polytechnic Panchkula

1. Chapter-1: Introduction to PLC
2. Chapter-2: Working of PLC
3. Chapter-3: Ladder Diagram Programming
4. Chapter-4: Applications of PLCs
5. Chapter-5: Introduction to SCADA
6. Chapter-6: Micro Controller Series (MCS)-51

Over View
7. Chapter-7: Instruction Set and Addressing

Modes of 8051
8. Chapter-8 :Assembly language programming
9. Chapter-9 : Design and Interfacing with 8051
10. Chapter-10 : Application of Micro controllers

Introduction to
PLC

3

 A PROGRAMMABLE LOGIC CONTROLLER (PLC)
is an industrial computer control system that
continuously monitors the state of input
devices and makes decisions based upon a
custom program to control the state of
output devices.

Their primary goal of PLC is

 To eliminate the high costs associated with
inflexible, relay-controlled systems

4

5

 The basic elements of a PLC include input
modules or points, a Central Processing Unit
(CPU), output modules or points, and
a programming device.

 The type of input modules or points used by
a PLC depend upon the types of input devices
used. Some input modules or points respond
to digital inputs, also called discrete inputs,
which are either on or off. Other modules or
inputs respond to analog signals.

6

 The primary function of a PLC’s input circuitry
is to convert the signals provided by these
various switches and sensors into logic
signals that can be used by the CPU.

 The CPU evaluates the status of inputs,
outputs, and other variables as it executes a
stored program.

 The CPU then sends signals to update the
status of outputs.

7

 The programming device is used to enter or
change the PLC’s program or to monitor or
change stored values.

 Once entered, the program and associated
variables are stored in the CPU.

 In addition to these basic elements, a PLC
system may also incorporate an operator
interface device of some sort to simplify
monitoring of the machine or process.

8

 The difference between a PLC and relay logic
is that a PLC is a programmable device where
as relay logic is a network of hardwired
electrical devices.

 Both a PLC and relay logic can perform logical
computation, but a PLC does it using a
microprocessor and relay logic does it using
electric circuits

9

 Prior to PLCs, many control tasks were performed by contactors,
control relays and other electromechanical devices. This is often
referred to as hard-wired control.

 Circuit diagrams had to be designed, electrical components
specified and installed, and wiring lists created. If an error was
made, the wires had to be reconnected correctly. A change in
function or system expansion required extensive component
changes and rewiring.

 Requires periodic maintenance and testing.

 Relay operation can be affected due to ageing of the components
and dust, pollution resulting in spurious trips

 Operation speed for an electromagnetic relays is limited by the
mechanical inertia of the component

10

 Smaller physical size than hard-wire
solutions.

 Easier and faster to make changes.

 PLCs have integrated diagnostics and override
functions.

 Diagnostics are centrally available.

 Applications can be immediately
documented.

 Applications can be duplicated faster and less
expensively.

11

 1. SMALL

 it covers units with up to 128 I/O’s and memories

up to 2 Kbytes.

 2. MEDIUM

 They have up to 2048 I/O’s and memories up to

32 Kbytes.

 3. LARGE

 They have up to 8192 I/O’s and memories up to

750 Kbytes.

12

There are only 5 languages that are considered to
be standard languages for use on PLCs,
according to IEC section 61131–3.

 Ladder Diagram (LD)
 A sequential function chart
 Function Block Diagram
 Instruction List
 Structured Text

13

 Ladder Diagram is the oldest PLC language.
This graphical programming language was
modeled from relay logic to allow engineers
and electricians to transition smoothly into
programming PLCs.

 Within Ladder, rungs and rails represent the
real world electrical connections. Specifically,
the vertical “rails” represent the supply power
of the device while the rungs that are
connected to the rails are equal to the
amount of control circuits.

14

 A sequential function chart is a graphical programming language
that mimics a flow chart. You use steps and transitions to get
output.

 Steps are functions within the program and house events that are
activated based on state and other specified conditions.

 Transitions are instructions based on true/false values that move
you from one step to another.

 Branches are used to initiate multiple steps at a time. The
branches act like threads where functions can run concurrently.

 All of these steps, transitions, and branches are housed in a
series of scripts that execute in a procedural manner. The visual
nature of the language allows users to monitor processes that
both heavily use conditional logic and run parallel instructions.
PLCs that are prone to suffering from bottlenecks can be more
intuitively maintained and troubleshooted using the chart to
follow the logic of the program.

15

 Block based programming languages are a type of
graphical language that minimizes code into blocks,
which allows for a simple way to create executable
commands.

 FBD in particular describes a function between inputs
and outputs that are connected by connection lines.
The logic of the inputs and outputs are stored in
blocks. The blocks are programmed onto sheets and
the PLC scans these sheets in order or by specified
connections between blocks, much like procedural
languages.

 The I/O focus mirrors that of ladder logic. Yet, the
code that the blocks contain allow engineers to
develop more complex batch control tasks among
other repeatable tasks.

16

 This is the PLC’s equivalent to assembly
language. This gives you immediate access to the
machine itself, which allows you to write code
that is compressed and fast. The code is
represented in the manner that the language’s
name suggests: in a list of commands.

 Structured Text is a high level language designed
to program PLCs. This is essentially the C++ of
the PLC world. Any PLC that requires complex
data handling will most likely use ST.

17

 Structured Text is a high level language
designed to program PLCs. This is essentially
the C++ of the PLC world. Any PLC that
requires complex data handling will most
likely use ST.

18

• Less wiring.

• Wiring between devices and relay contacts are done in

the PLC program.

• Easier and faster to make changes.

• Trouble shooting aids make programming easier and

reduce downtime.

• Reliable components make these likely to operate for

years before failure.

19

AMERICAN 1. Allen Bradley

 2. Gould Modicon

 3. Texas Instruments

 4. General Electric

 5. Westinghouse

 6. Cutter Hammer

 7. Square D

EUROPEAN 1. Siemens

 2. Klockner & Mouller

 3. Festo

 4. Telemechanique

JAPANESE 1. Toshiba

 2. Omron

 3. Fanuc

 4. Mitsubishi

20

 Manufacturing / Machining

 Food / Beverage

 Metals

 Power

 Mining

 Petrochemical / Chemical

21

Working of PLC

Prepared by Mrs. Alka Kalra

23

Major Components of a Common PLC

PROCESSOR

POWER

SUPPLY

I M

N O

P D

U U

T L

E

O M

U O

T D

P U

U L

T E

PROGRAMMING

DEVICE

From

SENSORS

Pushbuttons,

contacts,

limit switches,

etc.

To

OUTPUT

Solenoids,

contactors,

alarms

etc.

Prepared by Alka Kalra

 Read all field input devices via the input
interfaces, execute the user program stored in
application memory, then, based on whatever
control scheme has been programmed by the
user, turn the field output devices on or off, or
perform whatever control is necessary for the
process application.

 This process of sequentially reading the inputs,
executing the program in memory, and updating
the outputs is known as scanning.

Prepared by Alka Kalra

PHASE 1 – Input Status scan

 A PLC scan cycle begins with the CPU reading the status of its inputs.

PHASE 2– Logic Solve/Program Execution

 The application program is executed using the status of the inputs

PHASE 3– Logic Solve/Program Execution

 Once the program is executed, the CPU performs diagnostics and

communication tasks

PHASE 4 - Output Status Scan

 An output status scan is then performed, whereby the stored

output values are sent to actuators and other field output

devices. The cycle ends by updating the outputs.

Prepared by Alka Kalra

 As soon as Phase 4 are completed, the entire cycle
begins again with Phase 1 input scan.

 The time it takes to implement a scan cycle is called
SCAN TIME.
◦ The scan time composed of the program scan time, which is

the time required for solving the control program, and the I/O
update time, or time required to read inputs and update
outputs.

 The program scan time generally depends on the
amount of memory taken by the control program and
type of instructions used in the program. The time to
make a single scan can vary from 1 ms to 100 ms

Prepared by Alka Kalra

27

While the PLC is running, the scanning process includes the

following four phases, which are repeated continuously as

individual cycles of operation:

PHASE 2

Program

Execution

PHASE 3

Diagnostics/

Comm

PHASE 4

Output

Scan

PHASE 1

Read Inputs

Scan

Prepared by Alka Kalra

Prepared by Alka Kalra

 The input sources convert the real-time
analog electric signals to suitable digital
electric signals and these signals are applied
to the PLC through the connector rails.

 These input signals are stored in the PLC
external image memory in locations known as
bits. This is done by the CPU

 The control logic or the program instructions
are written onto the programming device
through symbols or through mnemonics and
stored in the user memory.

Prepared by Alka Kalra

 The CPU fetches these instructions from the user memory and
executes the input signals by manipulating, computing, processing
them to control the output devices.

 The execution results are then stored in the external image
memory which controls the output drives.

 The CPU also keeps a check on the output signals and keeps
updating the contents of the input image memory according to the
changes in the output memory.

 The CPU also performs internal programming functions like setting
and resetting of the timer, checking the user memory.

Prepared by Alka Kalra

Prepared by Alka Kalra

Prepared by Alka Kalra

 PLCs are capable of monitoring the inputs
continuously from sensors and producing the
output decisions to operate the actuators
based on the program. Every PLC system
needs at least these three modules:

 CPU Module

 Power Supply Module

 One or more I/O Module

Prepared by Alka Kalra

 CPU module consists of a central processor
and its memory. The Processor is responsible
for doing all the necessary computations and
data processing by accepting the inputs and
producing appropriate outputs.

Prepared by Alka Kalra

 The main function of the microprocessor is to

analyze data coming from field sensors through

input modules, make decisions based on the

user’s defined control program and return signal

back through output modules to the field devices.

 Field sensors(Input): switches, flow, level,

pressure, temp. transmitters, etc.

 Field output devices: motors, valves, solenoids,

lamps, or audible devices.

Prepared by Alka Kalra

 These PLCs use retentive memory to save
user programs and data when the power
supply breaks or fails and to resume the
execution of a user program ones the power
is restored.

 Thus, these PLCs do not need any use of a
keyboard or monitor for re programming the
processor each time.

 The retentive memory can be implemented
with the use of long-life batteries, EEPROM
modules and flash memory methods.

Prepared by Alka Kalra

 VOLATILE.

 A volatile memory is one that loses its stored

information when power is removed.

 Even momentary losses of power will erase any

information stored or programmed on a volatile

memory chip.

 Common Type of Volatile Memory

 RAM. Random Access Memory(Read/Write)

Prepared by Alka Kalra

 Read/write indicates that the information stored in

the memory can be retrieved or read, while write

indicates that the user can program or write

information into the memory.

 The words random access refer to the ability of

any location (address) in the memory to be

accessed or used. Ram memory is used for both

the user memory (ladder diagrams) and storage

memory in many PLC’s.

Prepared by Alka Kalra

 The CMOS-RAM (Complimentary Metal Oxide

Semiconductor) is probably one of the most

popular. CMOS-RAM is popular because it has a

very low current drain when not being accessed

(15microamps), and the information stored in

memory can be retained by as little as 2Vdc.

 RAM memory must have battery backup to retain

or protect the stored program.

Prepared by Alka Kalra

 NON-VOLATILE

 Has the ability to retain stored information when
power is removed, accidentally or intentionally.
These memories do not require battery back-up.

 Common Type of Non-Volatile Memory

 ROM, Read Only Memory

 Read only indicates that the information stored in
memory can be read only and cannot be
changed. Information in ROM is placed there by
the manufacturer for the internal use and
operation of the PLC.

Prepared by Alka Kalra

 PROM, Programmable Read Only Memory

 Allows initial and/or additional information to be

written into the chip.

 PROM may be written into only once after being

received from the PLC manufacturer;

programming is accomplish by pulses of current.

 The current melts the fusible links in the device,

preventing it from being reprogrammed. This type

of memory is used to prevent unauthorized

program changes.

Prepared by Alka Kalra

 EPROM, Erasable Programmable Read Only Memory

 Ideally suited when program storage is to be semi-

permanent or additional security is needed to prevent

unauthorized program changes.

 The EPROM chip has a quartz window over a silicon

material that contains the electronic integrated circuits.

This window normally is covered by an opaque

material, but when the opaque material is removed

and the circuitry exposed to ultra violet light, the

memory content can be erased.

 The EPROM chip is also referred to as UVPROM.

Prepared by Alka Kalra

Electrically Erasable Programmable Read Only
Memory

 Also referred to as E2PROM, is a chip that can be
programmed using a standard programming
device and can be erased by the proper signal
being applied to the erase pin.

 EEPROM is used primarily as a non-volatile
backup for the normal RAM memory. If the
program in RAM is lost or erased, a copy of the
program stored on an EEPROM chip can be down
loaded into the RAM.

Prepared by Alka Kalra

 Processor module includes both ROM and RAM
memories.

◦ ROM (Program Memory/System Memory) contains the
operating system, driver and application programs,

◦ RAM (Data Memory/Application Memory)stores user-
written programs and working data.

 The program information or the control logic is stored
in the user memory or the program memory from
where the CPU fetches the program instructions.

 The input and output signals and the timer and counter
signals are stored in the input and output external
image memory respectively.

Prepared by Alka Kalra

45

Memory Map Organization

SYSTEM

•System memory includes an area called the EXECUTIVE,

composed of permanently-stored programs that direct all system

activities, such as execution of the users control program,

communication with peripheral devices, and other system

activities.

•The system memory also contains the routines that implement

the PLC’s instruction set, which is composed of specific control

functions such as logic, sequencing, timing, counting, and

arithmetic.

•System memory is generally built from read-only memory

devices.

APPLICATION

•The application memory is divided into the data table area and

user program area.

•The data table stores any data associated with the user’s control

program, such as system input and output status data, and any

stored constants, variables, or preset values. The data table is

where data is monitored, manipulated, and changed for control

purposes.

•The user program area is where the programmed instructions

entered by the user are stored as an application control program.

•Data Table

•User Program

Prepared by Alka Kalra

 In some modular PLCs bus or rack is provided
in the backplane of the circuit into which all
the modules like CPU and other I/O modules
are plugged to the corresponding slots.

 This bus enables the communication between
CPU and I/O modules to send or receive the
data.

 This communication is established by
addressing the I/O modules according to the
location from CPU module along the bus.

Prepared by Alka Kalra

 Suppose, if the input module is located in the
second slot,
◦ the address must be I2:1.0 (second slot first

channel only as an example).

 Some buses provide necessary power to I/O
module circuitry, but they do not provide any
power to sensors and actuators connected to
I/O modules

Prepared by Alka Kalra

 The I/O interface section of a PLC connects it to
external field devices.

 The input and out modules of the
programmable logic controller are used to
connect the sensors and actuators to the
system to sense the various parameters such
as temperature, pressure and flow, etc.

 These I/O modules are of two types: digital
or analog.

Prepared by Alka Kalra

• The main purpose of the I/O interface is to
condition the various signals received from or sent
to the external input and output devices.

• Input modules converts signals from discrete or
analog input devices to logic levels acceptable to
PLC’s processor.

• Output modules converts signal from the
processor to levels capable of driving the
connected discrete or analog output devices.

Prepared by Alka Kalra

Prepared by Alka Kalra

OPTO-
ISOLATOR

IS NEEDED TO:

 Prevent voltage

transients from damaging

the processor.

Helps reduce the effects

of electrical noise

Current

Limiting

Resistor
FROM INPUT

DEVICE

USE TO DROP

THE VOLTAGE

TO LOGIC LEVEL

Buffer, Filter,

hysteresis

Circuits TO

PROCESSOR

Prepared by Alka Kalra

Prepared by Alka Kalra

Prepared by Alka Kalra

Pilot Duty Outputs

 Outputs of this type typically are used to drive high-current electromagnetic
loads such as solenoids, relays, valves, and motor starters.

These loads are highly inductive and exhibit a large current.

General - Purpose Outputs

 These are usually low- voltage and low-current and are used to drive indicating
lights and other non-inductive loads.

 Noise suppression may or may not be included on this types of modules.

Discrete Inputs

 Circuits of this type are used to sense the status of limit switches, push buttons,
and other discrete sensors.

 Noise suppression is of great importance in preventing false indication of inputs
turning on or off because of noise.

Prepared by Alka Kalra

 Circuits of this type sense or drive analog signals.

 Analog inputs come from devices, such as
thermocouples, strain gages, or pressure sensors,
that provide a signal voltage or current that is
derived from the process variable.

 Standard Analog Input signals: 4-20mA; 0-10V

 Analog outputs can be used to drive devices such
as voltmeters, X-Y recorders, servomotor drives,
and valves through the use of transducers.

 Standard Analog Output signals: 4-20mA; 0-5V; 0-
10V

Prepared by Alka Kalra

 Circuits of this type are used to interface PLCs to

very specific types of circuits such as

servomotors, stepping motors PID (proportional

plus integral plus derivative) loops, high-speed

pulse counting, resolver and decoder inputs,

multiplexed displays, and keyboards.

 This module allows for limited access to timer and

counter presets and other PLC variables without

requiring a program loader.

Prepared by Alka Kalra

PLC

INPUTS

OUTPUTS

MOTOR

LAMP

CONTACTOR

PUSHBUTTONS

Prepared by Alka Kalra

 It is used to enter the desired program that will
determine the sequence of operation and control
of process equipment or driven machine.

 Also known as:

 Industrial Terminal (Allen Bradley)

 Program Development Terminal (General
Electric)

 Programming Panel (Gould Modicon)

 Programmer (Square D)

 Program Loader (Idec-Izumi)

 Programming Console (Keyence / Omron)

Prepared by Alka Kalra

 Various types of programming devices are used to enter,
modify and troubleshoot a PLC program.

 Hand held unit with LED / LCD display

 Personal Computer (PC)

 Desktop type with a CRT display /Desktop Console



Prepared by Alka Kalra

 In the handheld programming device method, a
proprietary device is connected to PLC through
a connecting cable.

 This device consists of a set of keys that allows
to enter, edit and dump the code into the PLC.

 These handheld devices consist of small display
to make the instruction that has been
programmed visible.

 These are compact and easy to use devices, but
these handheld devices have limited capabilities.

Prepared by Alka Kalra

 Desktop consoles are likely to have a visual
display unit with a full keyboard and screen
display.

 Keyboard and monitor are used for
programming.

 Programming Unit communicated with PLC
through serial or Parallel port.

Prepared by Alka Kalra

 PC is used for programming the PLC in conjunction with the
software given by the manufacturer.

 By using this PC we can run the program in either online or offline
mode, and can also edit, monitor, diagnose and troubleshoot the
program of the PLC.

 The way of transferring the program to the PLC is shown in the
above figure wherein the PC consists of program code
corresponding to control application which is transferred to the
PLC CPU via programming cable.

 . A major advantage of using a computer is that the program can
be stored on the hard disk or a CD and copies can be easily made.

Prepared by Alka Kalra

Changing resident PLC programs -

uploading/downloading from a supervisory

controller (Laptop or desktop computer).

• Forcing I/O points and memory elements from a

remote terminal.

• Linking a PLC into a control hierarchy containing

several sizes of PLC and computer.

• Monitoring data and alarms, etc. via printers or

Operator Interface Units (OIUs).

Prepared by Alka Kalra

RS 232

Used in short-distance computer communications,

with the majority of computer hardware and

peripherals. Has a maximum effective distance of

approx. 30 m at 9600 baud.

RS 422 / RS 485

Used for longer-distance links, often between

several PCs in a distributed system.
RS 485 can have a maximum distance of about 1000

meters.

Prepared by Alka Kalra

Local Area Network provides a physical link between all
devices plus providing overall data exchange
management or protocol, ensuring that each device
can “talk” to other machines and understand data
received from them.

LANs provide the common, high-speed data
communications bus which interconnects any or all
devices within the local area.

LANs are commonly used in business applications to
allow several users to share costly software packages
and peripheral equipment such as printers and hard
disk storage.

Prepared by Alka Kalra

 A PLC power supply is the workhorse of
the PLC system. It converts your line voltage, 120 or
240 volts AC, to a lower DC voltage, commonly 24 volts
DC. This DC voltage is then sent into the rack
to power the rest of the PLC components.

 The output 5V DC drives the computer circuitry, and in
some PLCs 24DC on the bus rack drives few sensors
and actuators.

Prepared by Alka Kalra

Prepared by Alka Kalra

 Line voltage is stepped down with a
transformer, rectified to convert it to DC,
filtered with capacitors, and protected during
this process. All of this is packed into that
small looking power supply.

 This DC voltage is used to power the rest of
the PLC and components.

 The common current ratings for PLC’s are
anywhere from 2 to 10 amps for smaller
systems and up to 50 amps for larger, more
powerful controllers.

Prepared by Alka Kalra

Number of logical inputs and outputs

This specifies the number of I/O devices that can be

connected to the controller.

There should be sufficient I/O ports to meet present

requirements with enough spares to provide for

moderate future expansion.

Prepared by Alka Kalra

 MEMORY CAPACITY

The amount of memory required for a particular

application is related to the length of the program

and the complexity of the control system.

 Simple applications having just a few relays do not

require significant amount of memory.

 Program length tend to expand after the system

have been used for a while.

 It is advantageous to a acquire a controller that

has more memory than is presently needed.

Prepared by Alka Kalra

OUTPUT-PORT POWER RATINGS
Each output port should be capable of supplying sufficient

voltage and current to drive the output peripheral connected

to it.

Scan Time
This is the speed at which the controller executes the relay

ladder logic program. This variable is usually specified as the

scan time per 1000 logic nodes and typically ranges from 1 to

200 milliseconds.

Prepared by Alka Kalra

72

PLC Communications

Programmable Controllers and Networks

Dedicated Network System of Different Manufacturers

Manufacturer Network

Allen-Bradley Data Highway

Gould Modicon Modbus

General Electric GE Net Factory LAN

Mitsubishi Melsec-NET

Square D SY/NET

Texas Instruments TIWAY

Prepared by Alka Kalra

Communications Port
RS-232, RS 422 / RS 485,LAN

Software
 1. Allen-Bradley – Rockwell Software RSLogix500

 2. Modicon - Modsoft

 3. Omron - Syswin

 4. GE-Fanuc Series 6 – LogicMaster6

 5. Square D- PowerLogic

 6. Texas Instruments – Simatic

 6. Telemecanique – Modicon TSX Micro

Prepared by Alka Kalra

A Detailed Design Process

1. Understand the process

2. Hardware/software selection

3. Develop ladder logic

4. Determine scan times and memory requirements

PLC Status Indicators

1. Power On
2. Run Mode
3. Programming Mode
4. Fault

Prepared by Alka Kalra

1. Look at the process

2. PLC status lights

 HALT - something has stopped the CPU

 RUN - the PLC thinks it is OK (and probably is)

 ERROR - a physical problem has occurred with the

PLC

3. Indicator lights on I/O cards and sensors

4. Consult the manuals, or use software if

available.

5. Use programming terminal / laptop.

Prepared by Alka Kalra

Ladder Diagram Programming

 Problem Statement :
 Providing lubricant for the gear box before the lathe spindle starts to run

which aims to ensure that the oil pump motor starts first and the main motor
starts subsequently.

 Number of PLC Inputs Required

 X0 – START pushbutton to Start Oil Pump Motor

 X1 – START pushbutton to Stop Main Motor

 X2 – STOP pushbutton to Stop Oil Pump Motor

 X3 – STOP pushbutton to Stop Main Motor

 Number of PLC Outputs Required



Y0 – Oil Pump Motor

 Y1 – Main Motor

 This program is a typical application of the conditional
control circuit.
Y0 = ON when Oil Pump START button is pressed.

Therefore, the oil pump will start to provide lubricant
for the gear box of main motor(Y1)

 Under the precondition of the operating state of the
Oil pump, the main motor (Y1) will be ON when the Main
motor START button is pressed.

 During the operation of main motor (Y1), oil pump
(Y0) needs to provide lubricant continuously.

 The oil pump will be stopped when Oil pump STOP
button X2 is activated, and the main motor will be stopped
when Main motor STOP button X3 is activated.

 Problem Statement: Detecting the standing
bottles on the conveyor and pushing falling
bottles in tray.



Number of PLC Inputs Required
X0 – Proximity Sensor to sense bottom of the Bottle i.e. X0 = ON
when the detected input signal from the bottle-bottom is
sheltered.
X1 – Proximity Sensor to sense upper part of the Bottle i.e. X1 = ON
when the detected input signal from the bottle-neck is sheltered.
Number of PLC Outputs Required
Y0 – To operate Pushing Cylinder/Rod

 If the bottle on the conveyor belt is upstanding, the input signal
from monitoring photocell at both bottle-bottom and bottle-
neck will be detected. In this case, X0 = ON, and X1 = ON. The
normally open (NO) contact X0 will be activated as well as the
normally closed (NC) contact X1. Y0 remains OFF and pneumatic
pushing pole will not perform any action.

 If the bottle from the conveyor belt is down, only the input
signal from monitoring photocell at the bottle-bottom will be
detected. In this case, X0 = ON, X1 = OFF. The state of output
YO will be ON because the NO contact X0 activates and the NC
contact X1 remains OFF. The pneumatic pushing pole will push
the fallen bottle out of the conveyor belt.

 PLC Ladder Practice Problem:
 The production line may be powered off accidentally or

turned off for noon break. The program is to control the
counter to retain the counted number and resume counting
after the power is turned ON again. When the daily production
reaches 500, the target completed indicator will be ON to
remind the operator for keeping a record. Press the Clear
button to clear the history records. The counter will start
counting from 0 again.

Latched 16 bit UP counter

 Number of PLC Inputs Required

 X0 – Product Detecting Sensor. X1 – Production Counter RESET/Clear

 Number of PLC Outputs Required
Y0 – Production Counter Target Completed.

 Number of PLC Counter Required:
C120 – 16 Bit Latched Counter. (Max Count =32,768)

 The latching counter is demanded for the
situation of retaining data when power-off.

 When a product is completed, C120 will count
for one time. When the number reaches
500, target completed indicator Y0 will be
ON.

 For different series of PLC, the setup range of
16-bit latching counter is different.

 Enabling the indicator to be ON immediately
when switch pressed and OFF after a 5 sec
delay by the switch.

 Number of PLC Inputs Required



X1 – Start Switch.

 Number of PLC Outputs Required



Y1 – Output Indicator

 Number of PLC Timer Required



T0 – 5 second Timer, 100 ms Time Base. (See K50 Preset Value for Timer)

When X1 = ON, TMR instruction will be executed. Timer T1 will be ON and
start counting for 3 sec. When T1 reaches its set value, the NO (Normally
Open) contact T1 will be activated and indicator YI will be ON.
When X1 = OFF, TMR instruction will not be executed. Timer T1 will be OFF
and so will NO contact T1. Therefore, the indicator Y1 will be OFF.

 A practical application for a comparative function is
something called alternating motor control, where the run-
times of two redundant electric motors are monitored, with
the PLC determining which motor to turn on next based on
which motor has run the least

 In this program, two retentive on-delay timers keep track of each
electric motor’s total run time, storing the run time values in two
registers in the PLC’s memory:

 Motor A runtime and Motor B runtime. These two integer values
are input to the “greater than” instruction box for comparison.

 If motor A has run longer than motor B, motor B will be the one
enabled to start up next time the “start” switch is pressed.

 If motor A has run less time or the same amount of time as
motor B (the scenario shown by the blue-highlighted status
indications), motor A will be the one enabled to start.

 The two series-connected virtual contacts OUT motor A and OUT
motor B ensure the comparison between motor run times is not
made until both motors are stopped.

 If the comparison were continually made, a situation might arise
where both motors would start if someone happened to press
the Start pushbutton with one motor is already running.

Applications of PLCs

 Product packaging is one of the most
frequent cases for automation in industry.

 It can be encountered with small machines
(ex. packaging grain like food products) and
large systems such as machines for
packaging medications.

 Example we are showing here solves the
classic packaging problem with few elements
of automation.

 They are so many ways to write a program for
traffic light control ex: sequencer output
method but in this normal input, outputs and
timers are used.

 Timers are used to give time delay for output
to turn ON and OFF.

 Reset coil is used at the end to run the
program continuously.

 Comparator blocks are used to reduce the
number of timers used.

 We are dealing with a simple system that can
control 100 car at the maximum. Each time a
car enters, PLC automatically adds it to a total
sum of other cars found in the garage. Each
car that comes out will automatically be taken
off. When 100 cars park, a signal will turn on
signalizing that a garage is full and notifying
other drivers not to enter because there is no
space available.

 DC motors are totally different from AC
motors. They have commutator, field winding
and armature winding. The DC supply will be
given to the field winding and armature
winding. You can reverse the direction for DC
motor in two ways.

 By changing the supply Polarity in field winding
or filed supply. Field terminal consist of F1 and
F2. Normally, in forward direction the DC supply
will be given such as F1 – Positive and F2 –
Negative, to change the direction the polarity
should be F1- Negative and F2 – Positive.

 Also in same way we can change the direction of
DC Motor by changing the polarity of the
armature winding. Armature terminal consist of
A1 and A2. Normally, for forward direction the
DC supply will be given such as A1 – Positive and
A2 – Negative, to change the direction the
polarity should be A1- Negative and A2 –
Positive.

 One method of starting electric motors is
using direct on line (DOL) or across the line
starter. In this method full line voltage is
applied to the motor terminals. This is
simplest type of motor starter.

 DOL motor starter contains fuse and over load
relay (OLR) for protection purpose. The starter
can be contain momentary contact or maintained
contact push buttons. The example considered
here is momentary contact push buttons. For
starting purpose normally open (NO) push button
is preferred whereas normally closed (NC) push
button is used to stop the motor.

The excessive supply voltage drop causing high
inrush current is the criteria to limit the use of
DOL starter. Conveyor motors, water pumps are
the applications where DOL starters are used.

 Listing of Input and Output devices:
Inputs: PB1- To start the motor
PB2- To stop the motor
Output: M1- Motor

1. When Start push button (PB1) is pressed, Motor (M1) has
to start.
2. If Start pushbutton (PB1) is released and Stop
pushbutton (PB2) is not pressed, Motor (M1) should remain
on.
3. When Stop push button (PB2 is pressed, Motor (M1) has
tol stop.
4. If stop push button is released and start is not pressed
(released) motor shouldl remain off.

Introduction to SCADA

 SCADA is the acronym for Supervisory Control
And Data Acquisition. It is generally used for
industrial control systems.

 Thus, it is not a comprehensive control
system but it rather operates as supervisory
software superior to PLCs and other devices.

 A SCADA system is a common process
automation system which is used to gather data
from sensors and instruments located at remote
sites and to transmit and display this data at a
central site for control or monitoring purposes.

 Common analog signals that SCADA systems
monitor and control are levels, temperatures,
pressures, flow rate and motor speed. Typical
digital signals to monitor and control are level
switches, pressure switches, generator status,
relays & motors.

 The collected data is usually viewed on one or
more SCADA Host computers located at the
central or master site.

1. Analog inputs for live monitoring

 Analog inputs allow you to monitor real-time
data across your network.

 Many SCADA systems will only have discrete
inputs - which are digital and can only tell you if
something is "on" or "off."

 An analog input will be able to tell you precise
values, meaning you can have accurate data
about whatever you're monitoring.

 Graphical web interface is used for easy-to-use
interface system of SCADA

 By having control relays on your SCADA
system, you'll be able to remotely control any
device in your network that is normally
operated by a button or a switch.

 You'll be able to start equipment, open or
close doors, or turn on lights.

 Instead of driving long distances to perform
these simple tasks, you can do them right
from your desk - without wasting time or
money behind the windshield of a truck.

 All the equipment connected
through machine control are operated
through instruction sent over the web. The
processing unit analyses the data and
supervises the healthy functioning of the
signals transmitted in the entire unit. The
data is stored for valuation in a distributed
database. The acquired data also has
reference metadata stored for in the different
database such as a programmable logic
controller (PLC).

 The complete SCADA systems has four
significant units namely – data
communication, data acquisition, information
or data presentation and monitoring and
control system. With complete symphony in
the above four mentioned units, the entire
operation of the automation system can be
monitored.

 The data acquisition system fetches real-time
data from all the connected machine units.
The data reports about the status of all the
components and sensors, where data
communication network comes into play. The
system ensures accuracy in data being
transferred through the internet protocol.
Once the data is collected, the processing
unit analyses the data and presents it to the
operator through Human-Machine
Interface (HMI).

 This is the reason why many more enterprises are
looking for automating their industrial processes.

 With the Industrial Internet of Things taking the
front seat, it is essential to look for companies
helping businesses step towards automation.
Schneider

 Electric India is one of the significant names in
the research and development of the automation
industry. It has not only brought these systems
to common units but also helps the employees to
up skill their knowledge by training them how to
operate the machinery.

 HMI

 RTU

 MTU

 Data transmission

 A Human – Machine Interface (HMI) is the
apparatus which presents process data to a
human operator, and through this, the
human operator monitor and control the
process. HMI offers real-time monitor of data
about the process and through which an
operator can send commands to the
controller. Input devices such as the
keyboard, mouse, trackballs are available in
this section.

 MTU (master control unit), which is the
system controller. Some industries use the
term “host computer” instead of MTU.

 MTU communicates with the RTU that is
located away from the central location. There
can be many RTUs in the field, MTU can
monitor and control the field using the
scheduled program even when the operator is
not present. Changes can be done in the
process from the MTU end, can read some
process parameter.

 Remote terminal unit (RTU) connection to
sensors in the process and converting
sensors signals to digital data and sending
digital data to the supervisory system.

 RTU communicate with the MTU using
modulated signal. RTU receives the
modulated data from MTU and connection
can be through cable or radio.

 RTU field device connection is through
cables. RTU supplies both electrical power
and actuator signal to the field device.

 Long distance monitoring

 Long distance training

 Protection against terrorism/vandalism-alarm

 Data management (engineering and
operations)

 Automated operations with real-time control

 Reliability and Robustness (very large
installed base, mission-critical processes)

 SCADA systems are used to control and
monitor physical processes, examples of
which are transmission of electricity,
transportation of gas and oil in pipelines,
water distribution, traffic lights, and other
systems used as the basis of modern society.

 Although this is a new technology,
businesses have already leveraged the
technology in both the public and private
sector. It has brought about immense
satisfaction in the operation managers
because the system makes the production
line foolproof.

 This also streamlines packaging and delivery
lines following the processes. The overall
automation and process control has helped to
save a significant amount of money and time.

 A real world SCADA system can monitor and
control hundreds to hundreds of thousands
of I/O points. A typical Water SCADA
application would be to monitor water levels
at various water sources like reservoirs and
tanks and when the water level exceeds a
preset threshold, activate the system of
pumps to move water to tanks with low tank
levels.

Micro Controller Series
(MCS)-51 Over View

 The microprocessor is the core of computer
systems.

 Nowadays many communication, digital
entertainment, portable devices, are
controlled by them.

 A designer should know what types of
components he needs, ways to reduce
production costs and product reliable.

 Hardware :Interface to the real world

 Software :order how to deal with inputs

 CPU: Central Processing Unit
 I/O: Input /Output
 Bus: Address bus & Data bus
 Memory: RAM & ROM
 Timer
 Interrupt
 Serial Port
 Parallel Port

CPU

General-

Purpose

Micro-

processor

RAM ROM I/O

Port
Timer

Serial

COM

Port

Data Bus

Address Bus

 CPU for Computers

 No RAM, ROM, I/O on CPU chip itself

 Example：Intel’s 8085,8086, Motorola’s 680x0

Many chips on mother’s board

General-purpose microprocessor

Microprocessor

 CPU is stand-alone, RAM,

ROM, I/O, timer are separate

 Designer can decide on the

amount of ROM, RAM and

I/O ports.

 expansive

 versatility

 general-purpose

Microcontroller

• CPU, RAM, ROM, I/O and

timer are all on a single chip

• fix amount of on-chip ROM,

RAM, I/O ports

• for applications in which cost,

power and space are critical

• single-purpose

 4K bytes internal ROM

 128 bytes internal RAM

 Four 8-bit I/O ports (P0 - P3).

 Two 16-bit timers/counters

 One serial interface

RAM

I/O
Port

Timer
Serial
COM
Port

Microcontroller

CPU

A single chip

ROM

CPU

Interrupt
Control

OSC Bus
Control

4k
ROM

Timer 1
Timer 2

Serial

128 bytes
RAM

4 I/O Ports

TXD RXD

External Interrupts

P0 P2 P1 P3

Addr/Data

 only 1 On chip oscillator (external crystal)

 6 interrupt sources (2 external , 3 internal, Reset)

 64K external code (program) memory(only

read)PSEN

 64K external data memory(can be read and write) by

RD,WR

 Code memory is selectable by EA (internal or

external)

 We may have External memory as data and code

89XX ROM RAM Timer Int
Source

IO pin Other

8951 4k 128 2 6 32 -

8952 8k 256 3 8 32 -

8953 12k 256 3 9 32 WD

8955 20k 256 3 8 32 WD

898252 8k 256 3 9 32 ISP

891051 1k 64 1 3 16 AC

892051 2k 128 2 6 16 AC

WD: Watch Dog Timer
AC: Analog Comparator
ISP: In System Programable

 meeting the computing needs of the task
efficiently and cost effectively
◦ speed, the amount of ROM and RAM, the number of I/O

ports and timers, size, packaging, power consumption

◦ easy to upgrade

◦ cost per unit

 availability of software development tools
◦ assemblers, debuggers, C compilers, emulator,

simulator, technical support

 wide availability and reliable sources of the
microcontrollers

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

P1.7

RST

(RXD)P3.0

(TXD)P3.1

(T0)P3.4

(T1)P3.5

XTAL2

XTAL1

GND

(INT0)P3.2

(INT1)P3.3

(RD)P3.7

(WR)P3.6

Vcc

P0.0(AD0)

P0.1(AD1)

P0.2(AD2)

P0.3(AD3)

P0.4(AD4)

P0.5(AD5)

P0.6(AD6)

P0.7(AD7)

EA/VPP

ALE/PROG

PSEN

P2.7(A15)

P2.6(A14)

P2.5(A13)

P2.4(A12)

P2.3(A11)

P2.2(A10)

P2.1(A9)

P2.0(A8)

8051
(8031)

(8751)

(8951)

 One of the most useful features of the 8051 is that it
contains four I/O ports (P0 - P3)

 Port 0 （pins 32-39）：P0（P0.0～P0.7）
◦ 8-bit R/W - General Purpose I/O
◦ Or acts as a multiplexed low byte address and data bus for external

memory design

 Port 1 （pins 1-8） ：P1（P1.0～P1.7）
◦ Only 8-bit R/W - General Purpose I/O

 Port 2 （pins 21-28）：P2（P2.0～P2.7）
◦ 8-bit R/W - General Purpose I/O
◦ Or high byte of the address bus for external memory design

 Port 3 （pins 10-17）：P3（P3.0～P3.7）
◦ General Purpose I/O
◦ if not using any of the internal peripherals (timers) or external

interrupts.

 Each port can be used as input or output (bi-direction)

 PSEN (out): Program Store Enable, the read signal
for external program memory (active low).

 ALE (out): Address Latch Enable, to latch address
outputs at Port0 and Port2

 EA (in): External Access Enable, active low to access
external program memory locations 0 to 4K

 RXD,TXD: UART pins for serial I/O on Port 3

 XTAL1 & XTAL2: Crystal inputs for internal
oscillator.

 Vcc（pin 40）：
◦ Vcc provides supply voltage to the chip.
◦ The voltage source is +5V.

 GND（pin 20）：ground

 RST（pin 9: Reset

◦ input pin and active high（normally low）.

 The high pulse must be high at least 2
machine cycles.

◦ Power-on reset

 Upon applying a high pulse to RST, the
microcontroller will reset and all values
in registers will be lost.

 Reset values of some 8051 registers

8051 Internal Block Diagram

 8 bit CPU with registers A and B
 16 bit PC and DPTR(data pointer).
 8 bit program status word(PSW)
 8 bit Stack Pointer
 32 I/O pins arranged as 4 8 bit ports:P0 to P3
 Two 16 bit timer/counters:T0 and T1
 Full duplex serial data receiver/transmitter
 Control registers : TCON,TMOD,SCON,PCON,IP and IE
 Two external and Three internal interrupt sources.
 Oscillator and Clock Circuits.
 4K Internal ROM
 128bytes Internal RAM

- 4 register banks each having 8 registers
16 bytes, which may be addressed at the bit level.
80 bytes of general purpose data memory

Wednesday, November 1,
2023

07
06
05
04
03
02
01
00

R7
R6
R5
R4
R3
R2
R1
R0

0F

08

17

10

1F

18

Bank 3

Bank 2

Bank 1

Bank 0

Four Register Banks
Each bank has R0-R7
Selectable by psw.2,3

 Four banks of 8 byte-sized registers, R0 to R7

 Addresses are :

18 - 1F for bank 3

10 - 17 for bank 2

08 - 0F for bank 1

00 - 07 for bank 0 (default)

 Active bank selected by bits [RS1, RS0] in PSW.

 Permits fast “context switching” in interrupt service
routines (ISR).

A

B

R0

R1

R3

R4

R2

R5

R7

R6

DPH DPL

PC

DPTR

PC

Some 8051 16-bit Register

Some 8-bit
Registers of the

8051

 It is used as a general register to accumulate the

results of a large number of instructions.

 It can hold an 8-bit (1-byte) value and is the most

versatile register the 8051 has due to the shear

number of instructions that make use of the

accumulator.

 More than half of the 8051’s 255 instructions

manipulate or use the accumulator in some way.

 The "R" registers are a set of eight registers that are named
R0, R1, etc. up to and including R7.

 These registers are used as auxiliary registers in many
operations

 The "R" registers are also used to temporarily store values.
 For example, let’s say you want to add the values in R1

and R2 together and then subtract the values of R3 and R4.
One way to do this would be:

MOV A,R3 ;Move the value of R3 into the accumulator
ADD A,R4 ;Add the value of R4
MOV R5,A ;Store the resulting value temporarily in R5
MOV A,R1 ;Move the value of R1 into the accumulator
ADD A,R2 ;Add the value of R2
SUBB A,R5 ;Subtract the value of R5 (which now contains R3 +
R4)

 The "B" register is very similar to the Accumulator in

the sense that it may hold an 8-bit (1-byte) value.

 The "B" register is only used by two 8051

instructions: MUL AB and DIV AB. Thus, if you

want to quickly and easily multiply or divide A by

another number, you may store the other number in

"B" and make use of these two instructions.

 The Data Pointer (DPTR) is the 8051’s only user-

accessable 16-bit (2-byte) register. The

Accumulator, "R" registers, and "B" register are

all 1-byte values.

 DPTR, as the name suggests, is used to point to

data. It is used by a number of commands which

allow the 8051 to access external memory.

 DPTR is most often used to point to data in

external memory.

 The Program Counter (PC) is a 2-byte
address which tells the 8051 where the
next instruction to execute is found in
memory.

 When the 8051 is initialized PC always
starts at 0000h and is incremented each
time an instruction is executed.

 It is important to note that PC isn’t always
incremented by one. Since some
instructions require 2 or 3 bytes the PC will
be incremented by 2 or 3 in these cases.

 The Stack Pointer, like all registers except DPTR and

PC, may hold an 8-bit (1-byte) value. The Stack

Pointer is used to indicate where the next value to be

removed from the stack should be taken from.

 When a value is push onto the stack, the 8051 first

increments the value of SP and then stores the value

at the resulting memory location.

0000DPTR

0007SP

0000PSW

0000B

0000ACC

0000PC

Reset ValueRegister

RAM are all zero



Wednesday, November 1,
2023

 Port 0（pins 32-39）
 When connecting an 8051 to an external memory, the 8051 uses

ports to send addresses and read instructions.

◦ 16-bit address：P0 provides both address A0-A7, P2 provides
address A8-A15.

◦ Also, P0 provides data lines D0-D7.

 When P0 is used for address/data multiplexing, it is connected to
the 74LS373 to latch the address.

 Port 1（pins 1-8）
 Port 1 is denoted by P1.

◦ P1.0 ~ P1.7

◦ P1 as an output port (i.e., write CPU data to the external pin)

◦ P1 as an input port (i.e., read pin data into CPU bus)

Wednesday, November 1,
2023

 Although port 3 is configured as an output port upon reset,

this is not the way it is most commonly used.

 Port 3 has the additional function of providing signals.

◦ Serial communications signal：RxD, TxD

◦ External interrupt：/INT0, /INT1

◦ Timer/counter：T0, T1

◦ External memory accesses ：/WR, /RD

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7

DS5000

8751

8951

Vcc
10 K

P
o

rt

0

D
Q

Clk
Q

Vcc

Load(L1)

Read latch

Read pin

Write to
latch

Internal
CPU bus

M1

P1.X
pinP1.X

2. output
pin is Vcc1. write a 1 to the

pin 1

0 output 1

TB1

TB2

D
Q

Clk
Q

Vcc

Load(L1)

Read latch

Read pin

Write to
latch

Internal
CPU bus

M1

P1.X
pinP1.X

2. output
pin is

ground
1. write a 0 to the

pin 0

1 output 0

TB1

TB2

D
Q

Clk
Q

Vcc

Load(L1)

Read latch

Read pin

Write to latch

Internal CPU
bus

M1

P1.X pin

P1.X

2. MOV A,P1

external
pin=High1. write a 1 to the pin MOV

P1,#0FFH

1

0

3. Read pin=1 Read
latch=0 Write to

latch=1

1

TB1

TB2

D
Q

Clk
Q

Vcc

Load(L1)

Read latch

Read pin

Write to latch

Internal CPU
bus

M1

P1.X pin

P1.X

8051 IC

2. MOV A,P1

external pin=Low1. write a 1 to the pin

MOV P1,#0FFH

1

0

3. Read pin=1 Read
latch=0 Write to

latch=1

0

TB1

TB2

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7

DS5000

8751

8951

Vcc
10 K

P
o
rt

0

 The 8051 microcontroller's memory is
divided into Program Memory and Data
Memory.

 Program Memory (ROM) is used for
permanent saving program being executed,

 Data Memory (RAM) is used for temporarily
storing and keeping intermediate results and
variables.

 Program Memory (ROM) is used for permanent
saving program (CODE) being executed. The
memory is read only.

 Depending on the settings made in compiler,
program memory may also used to store
a constant variables. The 8051 executes
programs stored in program memory only.

 Code memory type specifier is used to refer to
program memory.

 8051 memory organization allows external
program memory to be added.

 How does the microcontroller handle external
memory depends on the pin EA logical state.

 Up to 256 bytes of internal data memory is
available

 Locations available to the user occupy
addressing space from 0 to 7Fh, i.e. first 128
registers and this part of RAM is divided in
several blocks.

 The first 128 bytes of internal data memory
are both directly and indirectly addressable.

 The upper 128 bytes of data memory (from
0x80 to 0xFF) can be addressed only
indirectly.

Wednesday, November 1,
2023

 RAM memory space allocation in the 8051

7FH

30H

2FH

20H

1FH

17H

10H

0FH

07H

08H

18H

00H
Register Bank 0

(Stack) Register Bank 1

Register Bank 2

Register Bank 3

Bit-Addressable RAM

Scratch pad RAM

Memory Organization

 Memory block in the range of 20h to 2Fh is
bit-addressable, which means that each bit
being there has its own address from 0 to
7Fh.

 Since there are 16 such registers, this block
contains in total of 128 bits with separate
addresses (Bit 0 of byte 20h has the bit
address 0, and bit 7 of byte 2Fh has the bit
address 7Fh).

 Access to external memory is slower than access
to internal data memory.

 There may be up to 64K Bytes of external data
memory.

 Several 8051 devices provide on-chip XRAM
space that is accessed with the same instructions
as the traditional external data space.

 This XRAM space is typically enabled via proper
setting of SFR register and overlaps the external
memory space.

 Setting of that register must be manually done in
code, before any access to external memory or
XRAM space is made.

Figure 2-8

Accessing
external

code
memory

Figure
2-11

Interface
to 1K
RAM

 SFRs which are also bit addressable

A, B, IP, IE, TCON, SCON, PSW, P0, P1, P2,
P3

 Other SFRs

TMOD, THO, TLO, TH1, TL1, SBUF, PCON,
SP, DPTR

DATA registers

CONTROL registers
Timers
Serial ports
Interrupt system
Analog to Digital converter
Digital to Analog converter
Etc.

Addresses 80h – FFh

Direct Addressing used to
access SPRs

Name Function Name Function

A Accumulator SBUF Serial Port data
buffer

B Arithmetic SP Stack Pointer

DPH Addressing Ext
Memory

TMOD Timer/Counter
mode cntrl

DPL Addressing Ext
Memory

TCON Timer/Counter
cntrl

IE Interrupt enable TL0 Timer0 lower byte

IP Interrupt Priority TH0 Timer0 higher
byte

P0 I/O Port Latch TL1 Timer1 lower byte

P1 I/O Port Latch TH1 Timer1 higher
byte

P2 I/O Port Latch

P3 I/O Port Latch

PCON Power Control

PSW Pgm Status

Gate : When set, timer only runs while INT(0,1)

is high.

C/T : Counter/Timer select bit.

M1 : Mode bit 1.

M0 : Mode bit 0.

TF1: Timer 1 overflow flag.

TR1: Timer 1 run control bit.

TF0: Timer 0 overflag.

TR0: Timer 0 run control bit.

IE1: External interrupt 1 edge flag.

IT1: External interrupt 1 type flag.

IE0: External interrupt 0 edge flag.

IT0: External interrupt 0 type flag.

Instruction Set and
Addressing Modes of 8051

Sunday, August 23, 2020

Immediate

Register

Direct

Register Indirect

Indexed

The way in which the instruction is specified.

Sunday, August 23, 2020

Immediate Data is specified in the instruction itself

Egs:

MOV A,#65H

MOV A,#’A’

MOV R6,#65H

MOV DPTR,#2343H

MOV P1,#65H

Sunday, August 23, 2020

MOV Rn, A ;n=0,..,7

ADD A, Rn

MOV DPL, R6

MOV DPTR, A

MOV Rm, Rn

Sunday, August 23, 2020

Although the entire of 128 bytes of RAM can be
accessed using direct addressing mode, it is most often
used to access RAM loc. 30 – 7FH.

MOV R0, 40H

MOV 56H, A

MOV A, 4 ; ≡ MOV A, R4

MOV 6, 2 ; copy R2 to R6

; MOV R6,R2 is invalid !

Sunday, August 23, 2020

 In this mode, register is used as a pointer to the data.

MOV A,@Ri

; move content of RAM loc. Where address is held by Ri into
A

(i=0 or 1)

MOV @R1,B

In other word, the content of register R0 or R1 is sources or
target in MOV, ADD and SUBB insructions.

⌦ jump

Sunday, August 23, 2020

This mode is widely used in accessing data elements
of look-up table entries located in the program (code)
space ROM at the 8051

MOVC A,@A+DPTR

A= content of address A +DPTR from ROM

Note:

Because the data elements are stored in the program
(code) space ROM of the 8051, it uses the instruction
MOVC instead of MOV. The “C” means code.

Data transfer instructions

Addressing modes

Data processing (arithmetic and logic)

Program flow instructions

MOV dest, source dest 🡨 source

Stack instructions
PUSH byte ;increment stack pointer,

;move byte on stack

POP byte ;move from stack to byte,

;decrement stack pointer

Exchange instructions
XCH a, byte ;exchange accumulator and byte

XCHD a, byte ;exchange low nibbles of

;accumulator and byte

Immediate Mode – specify data by its value

mov A, #0 ;put 0 in the accumulator

;A = 00000000

mov R4, #11h ;put 11hex in the R4 register

;R4 = 00010001

mov B, #11 ;put 11 decimal in b register

;B = 00001011

mov DPTR,#7521h ;put 7521 hex in DPTR

;DPTR = 0111010100100001

Immediate Mode – continue

MOV DPTR,#7521h

MOV DPL,#21H

MOV DPH, #75

COUNT EGU 30
~

~

mov R4, #COUNT

MOV DPTR,#MYDATA
~

~

0RG 200H

MYDATA:DB “IRAN”

Register Addressing – either source or
destination is one of CPU register

MOV R0,A

MOV A,R7

ADD A,R4

ADD A,R7

MOV DPTR,#25F5H

MOV R5,DPL

MOV R,DPH

Note that MOV R4,R7 is incorrect

Direct Mode – specify data by its 8-bit address
Usually for 30h-7Fh of RAM

Mov a, 70h ; copy contents of RAM at 70h to a

Mov R0,40h ; copy contents of RAM at 70h to a

Mov 56h,a ; put contents of a at 56h to a

Mov 0D0h,a ; put contents of a into PSW

Direct Mode – play with R0-R7 by direct address

MOV A,4 ≡ MOV A,R4

MOV A,7 ≡ MOV A,R7

MOV 7,2 ≡ MOV R7,R6

MOV R2,#5 ;Put 5 in R2

MOV R2,5 ;Put content of RAM at 5 in R2

Register Indirect – the address of the source or
destination is specified in registers

Uses registers R0 or R1 for 8-bit address:
mov psw, #0 ; use register bank 0

mov r0, #0x3C

mov @r0, #3 ; memory at 3C gets #3

; M[3C] 🡨 3

Uses DPTR register for 16-bit addresses:
mov dptr, #0x9000 ; dptr 🡨 9000h

movx a, @dptr ; a 🡨 M[9000]

Note that 9000 is an address in external memory

Register Indexed Mode – source or destination
address is the sum of the base address and
the accumulator(Index)

Base address can be DPTR or PC
mov dptr, #4000h

mov a, #5

movc a, @a + dptr ;a 🡨 M[4005]

 A register can be accessed by direct and register
mode

 This 3 instruction has same function with different
code

0703 E500 mov a,00h

0705 8500E0 mov acc,00h

0708 8500E0 mov 0e0h,00h

 Also this 3 instruction
070B E9 mov a,r1

070C 89E0 mov acc,r1

070E 89E0 mov 0e0h,r1

 B – always direct mode - except in MUL & DIV
0703 8500F0 mov b,00h

0706 8500F0 mov 0f0h,00h

0709 8CF0 mov b,r4

070B 8CF0 mov 0f0h,r4

 P0~P3 – are direct address
0704 F580 mov p0,a

0706 F580 mov 80h,a

0708 859080 mov p0,p1

 Also other SFRs (pcon, tmod, psw,….)

Op code Direct address

Op code Immediate data

immediate addressing

add a,#3dh ;machine code=243d

Direct addressing

mov r3,0E8h ;machine code=ABE8

 Stack-oriented data transfer
– Only one operand (direct addressing)

– SP is other operand – register indirect - implied

 Direct addressing mode must be used in Push and
Pop

mov sp, #0x40 ; Initialize SP

push 0x55 ; SP 🡨 SP+1, M[SP] 🡨 M[55]

; M[41] 🡨 M[55]

pop b ; b 🡨 M[55]

Note: can only specify RAM or SFRs (direct mode) to push or pop.
Therefore, to push/pop the accumulator, must use acc, not a

 Therefore
Push a ;is invalid

Push r0 ;is invalid

Push r1 ;is invalid

push acc ;is correct

Push psw ;is correct

Push b ;is correct

Push 13h

Push 0

Push 1

Pop 7

Pop 8

Push 0e0h ;acc

Pop 0f0h ;b

 Serial communication means transfer data bit by
bit serially at a time, where as in parallel
communication, the number of bits that can be
transferred at a time depends upon the number
of data lines available for communication.

 Two methods of serial communication are
 Synchronous Communication: Transfer of bulk

data in framed structure at a time
Asynchronous Communication: Transfer of a byte

data in framed structure at a time
 8051 has built in UART with RXD (serial data

receive pin) and TXD (serial data transmit pin) on
PORT3.0 and PORT3.1 respectively.

 Asynchronous serial communication is widely used for
byte oriented transmission.

 Frame structure in Asynchronous communication:
 START bit: It is a bit with which serial communication

start and it is always low.
 Data bits packet: Data bits can be 5 to 9 bits packet.

Normally we use 8 data bit packet, which is always sent
after START bit.

 STOP bit: This is one or two bits. It is sent after data
bits packet to indicate end of frame. Stop bit is always
logic high.

 In asynchronous serial communication frame, first
START bit followed by data byte and at last STOP bit,
forms a 10-bit frame. Sometimes last bit is also used
as parity bit.

Data transmission rate is measured in bits per
second (bps). In binary system it is also called
as baud rate (number of signal changes per
second).

Standard baud rates supported are 1200,
2400, 4800, 19200, 38400, 57600, and
115200. Normally most of the time 9600 bps
is used when speed is not a big issue.

SBUF: Serial Buffer Register

This is the serial communication data register
used to transmit or receive data through it.

SCON: Serial Control Register

Serial control register SCON is used to set
serial communication operation modes. Also
it is used to control transmit and receive
operations.

Mode SM0 SM1 Mode

0 0 0
1/12 of Osc frequency shift register mode fixed

baud rate

1 0 1 8-bit UART with timer 1 determined baud rate

2 1 0 9-bit UART with 1/32 of Osc fixed baud rate

3 1 1 9-bit UART with timer 1 determined baud rate

Bit 7:6 - SM0:SM1: Serial Mode Specifier

Normally mode-1 (SM0 =0, SM1=1) is used with 8 data bits, 1 start bit and
1 stop bit.

 Bit 5 - SM2: for Multiprocessor Communication
 This bit enables multiprocessor communication feature in mode 2 & 3.
 Bit 4 - REN: Receive Enable
 1 = Receive enable
 0 = Receive disable
 Bit 3 - TB8: 9th Transmit Bit
 This is 9th bit which is to be transmitted in mode 2 & 3 (9-bit mode)
 Bit 2 - RB8: 9th Receive Bit
 This is 9th received bit in mode 2 & 3 (9-bit mode), where as in mode 1, if SM2 =

0 then RB8 hold stop bit that received
 Bit 1 - TI: Transmit Interrupt Flag
 This bit indicates transmission is complete and gets set after transmitting the

byte from buffer. Normally TI (Transmit Interrupt Flag) is set by hardware at the
end of 8th bit in mode 0 and at the beginning of stop bit in other modes.

 Bit 0 – RI: Receive Interrupt Flag
 This bit indicates reception is complete and gets set after receiving the complete

byte in buffer. Normally RI (Receive Interrupt Flag) is set by hardware in receiving
mode at the end of 8th bit in mode 0 and at the stop bit receive time in other
modes.



The 8051 has two counters/timers which can
be used either as timer to generate a time
delay or as counter to count events
happening outside the microcontroller.

he 8051 has two timers: timer0 and timer1.
They can be used either as timers or as
counters. Both timers are 16 bits wide. Since
the 8051 has an 8-bit architecture, each 16-
bit is accessed as two separate registers of
low byte and high byte.

Timer0 registers is a 16 bits register and
accessed as low byte and high byte. The low
byte is referred as a TL0 and the high byte is
referred as TH0. These registers can be
accessed like any other registers.

Timer1 registers is also a 16 bits register and
is split into two bytes, referred to as TL1 and
TH1.

 This is an 8-bit register which is used by both timers 0 and
1 to set the various timer modes. In this TMOD register, lower
4 bits are set aside for timer0 and the upper 4 bits are set
aside for timer1

 In upper or lower 4 bits, first bit is a GATE bit. Every timer
has a means of starting and stopping. Some timers do this by
software, some by hardware, and some have both software
and hardware controls.

 The hardware way of starting and stopping the timer by an
external source is achieved by making GATE=1 in the TMOD
register. And if we change to GATE=0 then we do no need
external hardware to start and stop the timers.

 The second bit is C/T bit and is used to decide
whether a timer is used as a time delay generator
or an event counter. If this bit is 0 then it is used
as a timer and if it is 1 then it is used as a
counter.

 In upper or lower 4 bits, the last bits third and
fourth are known as M1 and M0 respectively.
These are used to select the timer mode.

M0 M1 Mode Operating Mode
 0 0 0 13-bit timer mode,
 0 1 1 16-bit timer mode,
 1 0 2 8-bit auto reload
 1 1 3 Spilt timer mode.

TCON is 8-bit control register and contains timer and interrupt flags.
Bit 7 - TF1: Timer1 Overflow Flag

1 = Timer1 overflow occurred (i.e. Timer1 goes to its max and roll over back to
zero).

0 = Timer1 overflow not occurred.

It is cleared through software. In Timer1 overflow interrupt service routine, this bit
will get cleared automatically while exiting from ISR.
Bit 6 - TR1: Timer1 Run Control Bit

1 = Timer1 start.
0 = Timer1 stop.

It is set and cleared by software.
Bit 5 – TF0: Timer0 Overflow Flag

1 = Timer0 overflow occurred (i.e. Timer0 goes to its max and roll over back
to zero).

0 = Timer0 overflow not occurred.

It is cleared through software. In Timer0 overflow interrupt service routine, this bit
will get cleared automatically while exiting from ISR.

 Bit 4 – TR0: Timer0 Run Control Bit

 1 = Timer0 start.
 0 = Timer0 stop.
 It is set and cleared by software.
 Bit 3 - IE1: External Interrupt1 Edge Flag
 1 = External interrupt1 occurred.
 0 = External interrupt1 Processed.
 It is set and cleared by hardware.
 Bit 2 - IT1: External Interrupt1 Trigger Type Select Bit
 1 = Interrupt occur on falling edge at INT1 pin.
 0 = Interrupt occur on low level at INT1 pin.
 Bit 1 – IE0: External Interrupt0 Edge Flag
 1 = External interrupt0 occurred.
 0 = External interrupt0 Processed.
 It is set and cleared by hardware.
 Bit 0 – IT0: External Interrupt0 Trigger Type Select Bit
 1 = Interrupt occur on falling edge at INT0 pin.
 0 = Interrupt occur on low level at INT0 pin.

Interrupts in 8051 microcontroller are more
desirable to reduce the regular status
checking of the interfaced devices or inbuilt
devices.

Interrupt is an event that temporarily
suspends the main program, passes the
control to a special code section, executes
the event-related function and resumes the
main program flow where it had left off.

Interrupts are of different types like software
and hardware, maskable and non-maskable,
fixed and vector interrupts, and so on.

 Interrupt Service Routine (ISR) comes into the
picture when interrupt occurs, and then tells
the processor to take appropriate action for
the interrupt, and after ISR execution, the
controller jumps into the main program.

 8051 has 5 sources of interrupts
– Timer 0 overflow(T0)
– Timer 1 overflow(T1)
– External Interrupt 0(INT0)
– External Interrupt 1(INT1)
– Serial Port events(TI/RI)
– The Timer and Serial interrupts are internally

generated by the microcontroller, whereas the external
interrupts are generated by additional interfacing
devices or switches that are externally connected to
the microcontroller. These external interrupts can be
edge triggered or level triggered. When an interrupt
occurs, the microcontroller executes the interrupt
service routine so that memory location corresponds to
the interrupt that enables it. The Interrupt
corresponding to the memory location is given in the
interrupt vector table below.

 What if two interrupt sources interrupt at the same time?

 The interrupt with the highest PRIORITY gets serviced first.

 All interrupts have a default priority order.

 Priority can also be set to “high” or “low”.

This register is responsible for enabling and
disabling the interrupt. It is a bit addressable
register in which EA must be set to one for
enabling interrupts. The corresponding bit in
this register enables particular interrupt like
timer, external and serial inputs. In the below
IE register, bit corresponding to 1 activates
the interrupt and 0 disables the interrupt.

This register is responsible for enabling and
disabling the interrupt. It is a bit addressable
register in which EA must be set to one for
enabling interrupts. The corresponding bit in
this register enables particular interrupt like
timer, external and serial inputs. In the below
IE register, bit corresponding to 1 activates
the interrupt and 0 disables the interrupt.

▪ EA : Global enable/disable.

▪ --- : Undefined.

▪ ET2 :Enable Timer 2 interrupt.

▪ ES :Enable Serial port interrupt.

▪ ET1 :Enable Timer 1 interrupt.

▪ EX1 :Enable External 1 interrupt.

▪ ET0 : Enable Timer 0 interrupt.

▪ EX0 : Enable External 0 interrupt.

 It is also possible to change the priority levels of
the interrupts by setting or clearing the
corresponding bit in the Interrupt priority (IP)
register as shown in the figure.

 This allows the low priority interrupt to interrupt
the high-priority interrupt, but prohibits the
interruption by another low-priority interrupt.
Similarly, the high-priority interrupt cannot be
interrupted.

 If these interrupt priorities are not programmed,
the microcontroller executes in predefined
manner and its order is INT0, TF0, INT1, TF1, and
SI.

Operation:MOV
 Function:Move memory
 Syntax:MOV operand1,operand2

Description: MOV copies the value
of operand2 into operand1. The value
of operand2 is not affected.

 Both operand1 and operand2 must be in Internal
RAM.

No flags are affected unless the instruction is
moving the value of a bit into the carry bit in
which case the carry bit is affected or unless the
instruction is moving a value into the PSW register
(which contains all the program flags).

No flags are affected unless the instruction is
moving the value of a bit into the carry bit in
which case the carry bit is affected or unless
the instruction is moving a value into the PSW
register (which contains all the program
flags).

MOV @R0,#data
MOV @R0,A
MOV A,#data
MOV A,@R1
MOV A,R0

two way data transfer

XCH a, 30h ; a 🡨 🡨 M[30]

XCH a, R0 ; a 🡨 🡨 R0

XCH a, @R0 ; a 🡨 🡨 M[R0]

XCHD a, R0 ; exchange “digit”

R0[7..4] R0[3..0]a[7..4] a[3..0]

Only 4 bits exchanged

 transfers between individual bits.

 Carry flag (C) (bit 7 in the PSW) is used as a single-
bit accumulator

 RAM bits in addresses 20-2F are bit addressable

mov C, P0.0

mov C, 67h

mov C, 2ch.7

SFRs with addresses
ending in 0 or 8
are bit-
addressable.
(80, 88, 90, 98, etc)

Notice that all 4
parallel I/O ports
are bit addressable.

 Subroutines allow us to have "structured" assembly language
programs.

 This is useful for breaking a large design into manageable
parts.

 It saves code space when subroutines can be called many
times in the same program.

Main: ...

acall sublabel

...

...

sublabel: ...

...

ret

the subroutine

square: push b

mov b,a
mul ab
pop b
ret

 8 byte and 11 machine cycle

 SP is initialized to 07 after reset.(Same address as R7)

 With each push operation 1st , pc is increased

 When using subroutines, the stack will be used to store the PC, so it is
very important to initialize the stack pointer. Location 2Fh is often
used.

mov SP, #2Fh

mov a,#0aah

Back1:mov p0,a

lcall delay1

cpl a

sjmp back1

Delay1:mov r0,#0ffh;1cycle

Here: djnz r0,here ;2cycle

ret ;2cycle

end

Delay=1+255*2+2=513 cycle

Delay2:

mov r6,#0ffh

back1: mov r7,#0ffh ;1cycle

Here: djnz r7,here ;2cycle

djnz r6,back1;2cycle
ret ;2cycle

end

Delay=1+(1+255*2+2)*255+2

=130818 machine cycle

Mnemonic Description

ADD A, byte add A to byte, put result in A

ADDC A, byte add with carry

SUBB A, byte subtract with borrow

INC A increment A

INC byte increment byte in memory

INC DPTR increment data pointer

DEC A decrement accumulator

DEC byte decrement byte

MUL AB multiply accumulator by b register

DIV AB divide accumulator by b register

DA A decimal adjust the accumulator

add a, byte ; a 🡨 a + byte

addc a, byte ; a 🡨 a + byte + C

These instructions affect 3 bits in PSW:

C = 1 if result of add is greater than FF

AC = 1 if there is a carry out of bit 3

OV = 1 if there is a carry out of bit 7, but not from bit 6, or
visa versa.

mov a, #3Fh

add a, #D3h

 What is the value of the
C, AC, OV flags after
the second instruction
is executed?

0011 1111

1101 0011

0001 0010

C = 1

AC = 1

OV = 0

0111 1111 (positive 127)

0111 0011 (positive 115)

1111 0010 (overflow

cannot represent 242 in 8

bits 2’s complement)

2’s complement:

0000 0000 00 0

…

0111 1111 7F 127

1000 0000 80 -128

…

1111 1111 FF -1

1000 1111 (negative 113)

1101 0011 (negative 45)

0110 0010 (overflow)

0011 1111 (positive)

1101 0011 (negative)

0001 0010 (never overflows)

; Computes Z = X + Y
; Adds values at locations 78h and 79h and puts them in 7Ah
;--

X equ 78h
Y equ 79h
Z equ 7Ah
;--

org 00h
ljmp Main

;--

org 100h
Main:

mov a, X
add a, Y
mov Z, a
end

; Computes Z = X + Y (X,Y,Z are 16 bit)
;--

X equ 78h
Y equ 7Ah
Z equ 7Ch
;--

org 00h
ljmp Main

;--

org 100h
Main:

mov a, X
add a, Y
mov Z, a
mov a, X+1

adc a, Y+1
mov Z+1, a
end

SUBB A, byte subtract with borrow

Example:

SUBB A, #0x4F ;A 🡨 A – 4F – C

Notice that
There is no subtraction WITHOUT borrow.
Therefore, if a subtraction without borrow is desired,
it is necessary to clear the C flag.

Example:

Clr c

SUBB A, #0x4F ;A 🡨 A – 4F

 The increment and decrement instructions do NOT affect
the C flag.

 Notice we can only INCREMENT the data pointer, not
decrement.

INC A increment A

INC byte increment byte in memory

INC DPTR increment data pointer

DEC A decrement accumulator

DEC byte decrement byte

Assume 16-bit word in R3:R2

mov a, r2

add a, #1 ; use add rather than increment to affect C

mov r2, a

mov a, r3

addc a, #0 ; add C to most significant byte

mov r3, a

When multiplying two 8-bit numbers, the size of the
maximum product is 16-bits

FF x FF = FE01

(255 x 255 = 65025)

MUL AB ; BA 🡨 A *

B

Note : B gets the High byte
A gets the Low byte

Integer Division

DIV AB ; divide A by B

A 🡨 Quotient(A/B)

B 🡨 Remainder(A/B)

OV - used to indicate a divide by zero condition.
C – set to zero

DA a ; decimal adjust a

Used to facilitate BCD addition.
Adds “6” to either high or low nibble after an addition
to create a valid BCD number.

Example:
mov a, #23h

mov b, #29h

add a, b ; a 🡨 23h + 29h = 4Ch (wanted 52)

DA a ; a 🡨 a + 6 = 52

❑ Bitwise logic operations
❖ (AND, OR, XOR, NOT)

❑ Clear

❑ Rotate

❑ Swap

Logic instructions do NOT affect the flags in PSW

ANL 🡨 AND

ORL 🡨 OR

XRL 🡨 XOR

CPL 🡨 Complement

Examples:

0000111
1

1010110
0

ANL

0000111
1

1010110
0

ORL

0000111
1

1010110
0

XRL

1010110
0

CPL

0000110
0

1010111
1

1010001
1

0101001
1

a, byte

direct, reg. indirect, reg,

immediate

byte, a

direct

byte, #constant

a ex: cpl a

ANL – AND

ORL – OR

XRL – eXclusive oR

CPL – Complement

 Force individual bits low, without affecting other
bits.

anl PSW, #0xE7 ;PSW AND 11100111

 Force individual bits high.
orl PSW, #0x18 ;PSW OR 00011000

 Complement individual bits
xrl P1, #0x40 ;P1 XRL 01000000

CLR - clear

RL – rotate left

RLC – rotate left through Carry

RR – rotate right

RRC – rotate right through Carry

SWAP – swap accumulator nibbles

CLR A

CLR byte (direct mode)

CLR Ri (register mode)

CLR @Ri (register indirect mode)

Rotate instructions operate only on a

RL a

Mov a,#0xF0 ; a🡨 11110000

RR a ; a🡨 11100001

RR a

Mov a,#0xF0 ; a🡨 11110000

RR a ; a🡨 01111000

RRC a

mov a, #0A9h ; a 🡨 A9

add a, #14h ; a 🡨 BD (10111101), C🡨 0

rrc a ; a 🡨 01011110, C🡨 1

RLC a

mov a, #3ch ; a 🡨 3ch(00111100)

setb c ; c 🡨 1

rlc a ; a 🡨 01111001, C🡨 1

C

C

Note that a shift left is the same as
multiplying by 2, shift right is divide by 2

mov a, #3 ; A🡨 00000011 (3)

clr C ; C🡨 0

rlc a ; A🡨 00000110 (6)

rlc a ; A🡨 00001100 (12)

rrc a ; A🡨 00000110 (6)

SWAP a

mov a, #72h ; a 🡨 27h

swap a ; a 🡨 27h

 Some logic operations can be used with single bit
operands

ANL C, bit

ORL C, bit

CLR C

CLR bit

CPL C

CPL bit

SETB C

SETB bit

 “bit” can be any of the bit-addressable RAM
locations or SFRs.

Program segment to multiply by 2 and add 1.

Unconditional jumps (“go to”)

Conditional jumps

Call and return

SJMP <rel addr> ; Short jump,
relative address is 8-bit 2’s complement number,

so jump can be up to 127 locations forward, or 128

locations back.

LJMP <address 16> ; Long jump

AJMP <address 11> ; Absolute jump to
anywhere within 2K block of program memory

JMP @A + DPTR ; Long indexed
jump

Start: mov C, p3.7

mov p1.6, C

sjmp Start

Microcontroller application programs are almost always infinite loops!

Memory specific NOT Re-locatable (machine code)

org 8000h

Start: mov C, p1.6

mov p3.7, C

ljmp Start

end

Re-locatable (machine code)

org 8000h

Start: mov C, p1.6

mov p3.7, C

sjmp Start

end

Mov dptr,#jump_table

Mov a,#index_number

Rl a

Jmp @a+dptr

...

Jump_table: ajmp case0

ajmp case1

ajmp case2

ajmp case3

 These instructions cause a jump to occur only if a
condition is true. Otherwise, program execution
continues with the next instruction.

loop: mov a, P1

jz loop ; if a=0, goto loop,

; else goto next instruction

mov b, a

 There is no zero flag (z)

 Content of A checked for zero on time

Mnemonic Description
JZ <rel addr> Jump if a = 0

JNZ <rel addr> Jump if a != 0

JC <rel addr> Jump if C = 1

JNC <rel addr> Jump if C != 1

JB <bit>, <rel addr> Jump if bit = 1

JNB <bit>,<rel addr> Jump if bit != 1

JBC <bir>, <rel addr> Jump if bit =1, &clear

bit

CJNE A, direct, <rel addr> Compare A and memory,

jump if not equal

jz led_off

Setb P1.6

sjmp skipover

led_off: clr P1.6

mov A, P0

skipover:

if (a = 0) is true

send a 0 to LED

else

send a 1 to LED

Mnemonic Description

CJNE A, #data <rel addr> Compare A and data, jump

if not equal

CJNE Rn, #data <rel addr> Compare Rn and data,

jump if not equal

CJNE @Rn, #data <rel addr> Compare Rn and memory,

jump if not equal

DJNZ Rn, <rel addr> Decrement Rn and then

jump if not zero

DJNZ direct, <rel addr> Decrement memory and

then jump if not zero

For A = 0 to 4 do

{…}

clr a

loop: ...

...

inc a

cjne a, #4, loop

For A = 4 to 0 do

{…}

mov R0, #4

loop: ...

...

djnz R0, loop

mov a,#50h

mov b,#00h

cjne a,#50h,next

mov b,#01h

next: nop

end

mov a,#25h

mov r0,#10h

mov r2,#5

Again: mov @ro,a

inc r0

djnz r2,again

end

mov a,#0h

mov r4,#12h

Back: add a,#05

djnz r4,back

mov r5,a

end

mov a,#0aah

mov b,#10h

Back1:mov r6,#50

Back2:cpl a

djnz r6,back2

djnz b,back1

end

Call is similar to a jump, but
–Call pushes PC on stack before branching

acall <address ll> ; stack 🡨 PC

; PC 🡨 address 11 bit

lcall <address 16> ; stack 🡨 PC

; PC 🡨 address 16 bit

Return is also similar to a jump, but

– Return instruction pops PC from stack to get
address to jump to

ret ; PC 🡨 stack

Assembly language programming

 Assembly language programming

 Data Transfer operations

 Input/Output operations

 The assembly language is a fully hardware
related programming language.

 The embedded designers must have
sufficient knowledge on hardware of
particular processor or controllers before
writing the program.

 The assembly language is developed by
mnemonics; therefore, users cannot
understand it easily to modify the program.

 The assembly code must be written in upper
case letters

 The labels must be followed by a colon
(label:)

 All symbols and labels must begin with a
letter

 All comments are typed in lower case

 The last line of the program must be the END
directive

 The assembling directives give the directions
to the CPU. The
8051 microcontroller consists of various
kinds of assembly directives to give the
direction to the control unit. The most useful
directives are 8051 programming, such as:

 ORG

 DB

 EQU

 END

 ORG(origin): This directive indicates the start of the
program. This is used to set the register address during
assembly. For example; ORG 0000h tells the compiler all
subsequent code starting at address 0000h.

 Syntax: ORG 0000h
 DB(define byte): The define byte is used to allow a string

of bytes. For example, print the “EDGEFX” wherein each
character is taken by the address and finally prints the
“string” by the DB directly with double quotes.

 Syntax:
 ORG 0000h
 MOV a, #00h

————-
DB”EDGEFX”

 EQU (equivalent): The equivalent directive is used to
equate address of the variable.

 Syntax:
 reg equ,09h

—————–
—————–
MOV reg,#2h

 END:The END directive is used to indicate the end of the
program.

 Syntax:
 reg equ,09h
 —————–

—————–
MOV reg,#2h
END

 An Assembly language program consists of,
among other things, a series of lines of
Assembly language instructions.

 An Assembly language instruction consists
of a mnemonic, optionally followed by one or
two operands.

 The operands are the data items being
manipulated, and the mnemonics are the
commands to the CPU, telling it what to do
with those items.

 MOV destination, source. Data movement in the internal RAM. This type of
instructions supported by virtually all addresses, direct, indirect, recording and
immediate.

 MOV A,P0 ; Mueve el contenido del puerto 0 al acumulador
MOV R1,A ; Mueve el contenido del Acumulador al registro 1

 MOVX. Data movement in the external RAM (XRAM). This type of motion only
supports indirect addressing, register 8bit by R0 or R1 and 16-bit register via the
DPTR.

 MOV DPTR,#2000H ; Mover al registro apuntador DPTR el dato inmediato 2000H
(dirección)
MOVX A,@DPTR ; Mover el contenido de la memoria que apunta el DPTR (2000H)
al Acumulador

 MOVC. Allows movement of the accumulator ROM. By this statement can make the
manipulation or movement of tables from the program memory.

 XCH. Swaps the contents of the accumulator and the internal RAM.
 XCHD. Swaps the contents of the first 4 bits of the Accumulator with internal RAM.
 PUSH and POP. To transfer data to the stack.

 Computers transfer data in two ways: parallel and serial.
 In parallel data transfers, often 8 or more lines (wire conductors)

are used to transfer data to a device that is only a few feet away.
Examples of parallel transfers are printers and hard disks; each
uses cables with many wire strips. Although in such cases a lot
of data can be transferred in a short amount of time by using
many wires in parallel, the distance cannot be great.

 To transfer to a device located many meters away, the serial
method is used. In serial communication, the data is sent one bit
at a time, in contrast to parallel communication, in which the
data is sent a byte or more at a time.

 Serial communication of the 8051 is the topic of this chapter.
The 8051 has serial communication capability built into it,
thereby making possible fast data transfer using only a few
wires.

 When a microprocessor communicates with the
outside world, it provides the data in byte-sized
chunks. In some cases, such as printers, the
information is simply grabbed from the 8-bit data
bus and presented to the 8-bit data bus of the
printer.

 This can work only if the cable is not too long, since
long cables diminish and even distort signals.
Furthermore, an 8-bit data path is expensive.

 For these reasons, serial communication is used for
transferring data between two systems located at
distances of hundreds of feet to millions of miles
apart. Figure 10-1 diagrams serial versus parallel
data transfers.

The fact that serial communication uses a single data line instead of
the 8-bit data line of parallel communication not only makes it much
cheaper but also enables two computers located in two different cities
to communicate over the telephone
.For serial data communication to work, the byte of data must be
converted to serial bits using a parallel-in-serial-out shift register;
then it can be transmitted over a single data line. This also means
that at the receiving end there must be a serial-in-parallel-out shift
register to receive the serial data and pack them into a byte.

 Serial data communication uses two methods,
asynchronous and synchronous.
The synchronous method transfers a block of
data (characters) at a time, while
the asynchronous method transfers a single
byte at a time. It is possible to write software
to use either of these methods, but the
programs can be tedious and long. For this
reason, there are special 1C chips made by
many manufacturers for serial data
communications

. These chips are commonly referred to as UART (universal
asynchronous receiver-transmitter) and USART (universal
synchronous-asynchronous receiver-transmitter).

 Data transfer instructions are responsible for
transferring data between various memory storing
elements like registers, RAM, and ROM. The
execution time of these instructions varies based on
how complex an operation they have to perform.

 In the table given in next slides, we have listed all
the data transfer instruction. In the table [A]=
Accumulator; [Rn]=Register in RAM; DPTR=Data
Pointer; PC=Program Counter

 Lets take all these Data Transfer instructions one by
one.

 1) MOV Instruction-The MOV instruction has two
operands, the source, and the destination. The second
operand is the source, whereas the first one is the
destination. This instruction uses various addressing
modes to move data in the RAM space of the
microcontroller.

• Examples-MOV A, R0 //Moves data from the register
R0 to the accumulator

• MOV R0,50H //Moves data stored in memory location
50H to Ro

• MOV A,@R0 //Uses data stored in R0 register as an
address and moves the data at that location to the
accumulator

OPCODE OPERAND DESCRIPTION

MOV A,Rn Moves data from
registers in register
banks of RAM to
accumulator

MOV A, Address Moves data from an
address in the RAM
space to the
accumulator

MOV A,@Rn Uses data stored in a
register as an address
and moves the data at
that address to the
accumulator

OPCODE OPERAND DESCRIPTION

MOV A,#Data Moves data given by
programmer directly
to the accumulator

MOV Rn,A Moves data from the
accumulator to
registers in register
bank

MOV Rn,Address Moves data from an
address in the RAM
space to a register in
the register banks

OPCODE OPERAND DESCRIPTION

MOV Rn,#Data Moves data given by a
programmer directly
to a register in the
register banks

MOV Address,A Moves data to an
address in the RAM
space from the
Accumulator

MOV Address,Rn Moves data to an
address in the RAM
space from a register
in the register banks

OPCODE OPERAND DESCRIPTION

MOV Address,Address Moves data from one
address to the other

MOV Address,@Ri Uses data stored in a
register as an address
and moves the data at
that address to a
register in the register
bank

MOV Address,#Data Moves data given by
the programmer
directly to an address

OPCODE OPERAND DESCRIPTION

MOV @Rn,A Moves data from the
accumulator to an
address which is
stored in a register

MOV @Rn,Address Moves data from an
address to an address
which is stored in a
register

MOV @Rn,#Data Moves data given by
the programmer to an
address which is
stored in the register

 MOVC Instruction

 MOVC instruction is responsible for moving data

from the Program memory (Flash memory) to

the RAM for processing it.

 Example

• MOVC A,@A+DPTR

• MOVC A,@A+PC

 The table for this instruction is on the next
slide

OPCODE OPERAND DESCRIPTION

MOVC A, @A+DPTR Moves data to
accumulator from a
address stored in the
memory location
(internal ROM) at
A+DPTR

MOVC A, @A+PC Moves data to
accumulator from a
address stored in the
memory
location(internal ROM)
at A+PC

 MOVX Instruction

 The 8051 microcontroller in most cases has an

on-chip 4K flash memory, but due to its 16-bit

address bus, it can access 64k memory locations.

Due to this reason, the 8051 can be interfaced

with external memory using ports 0 and 2. To

access data in this external memory, the MOVX

instruction is used

 The Table for this instruction starts from the next
slide.

OPCODE OPERAND DESCRIPTION

MOVX A, @Rn Moves data to
accumulator from a
memory location
(External ROM)

MOVX @Rn,A Moves data to
Memory location
(External ROM) from a
register in the register
bank

MOVX A, @DPTR Moves data to
accumulator from a
memory location
(External ROM)
pointed by the Data
Pointer

MOVX @DPTR,A Moves data to
Memory location
(External ROM)
pointed by data

 Stack operations

 The RAM of the 8051 microcontroller is home to a set of 32 general-
purpose registers (00H-1FH). These registers are 8 bit wide and are
bundled in groups of 8 forming four register banks. Stack operations
can be used to place data into these registers in an efficient manner.
These stack operations use special commands (PUSH, POP) to place
and extract data from these general purposes registers.

 The PUSH operation

 The PUSH operation is used to place data into the stack. When this
command is given the value of address stored in the stack pointer is
increased by one. After incrementing the address in the stack pointer,
data is placed at that memory location. For example, when the 8051 is
powered up, it holds the address 07H. When it receives the first PUSH
instruction, the address is updated to 08H, and data is stored in that
location.

https://technobyte.org/8051-special-function-registers-sfr/

 Example (R6 contains 80H and stack pointer points at
07H)

 PUSH 6; This instruction moves data stored in register R6
to 08H

 The POP operation
 The POP operation is used to extract data that is stored in

the stack. This operation is the complete opposite of the
PUSH operation. It extracts the data from the location
which the stack pointer points to and then decreases the
value of the SP by 1.

 Example (Stack pointer points at memory location 08H
which contains 50H)

 POP 6; register R6 now contains the data 50H and the
stack pointer points to 07H

OPCODE OPERAND DESCRIPTION

PUSH Rn Places value at the top
of the stack

POP Rn Extracts the data from
the top of the stack

 Exchange Instructions

 This operation is used to exchange data between

the source and the destination operands.

 Example

• XCH A, R0; exchanges the data stored in the

accumulator and R0

• XCHD A,@R0; Exchanges the lower four bits of a

memory location stored in a register with the

accumulator

OPCODE OPERAND DESCRIPTION

XCH A,Rn Exchanges the value
between a register
and the accumulator

XCH A,Address Exchanges the value
between the
accumulator and a
memory location in
the RAM

XCHD A,@Rn Exchanges the value
between the
accumulator and a
memory location
stored in the register

XCHD A,@Rn Exchanges the lower
four bits of a memory
location stored in a
register with the

 The 8051 has four important ports. Port 0, Port 1, Port 2 and Port 3. These

ports allow the microcontroller to connect with the outside world. The four

ports of 8051 microcontrollers have certain specific functions and

corresponding features. In this post, we will have a look at the purpose of

each of these ports.

 What are the features of the four ports of 8051?

• Each port has 8 pins. Thus the four ports jointly comprise 32 pins.

• All ports are bidirectional.

• They are constructed with a D type output latch. They have output drivers

and input buffers.

• We can modify their functions using software and hardware that they

connect to.

• All the ports are configured as input ports on Reset.

• To configure ports as an input port 1 must be written to that port

• To configure it as an output port 0 must be written to it.

• Port 0 Features
• Address is 80H
• Construction: Port 0 has a D-type latch, unidirectional buffer, and 2

FETs at each pin. It does not have an internal pull-up resistor. An
external pull-up resistor is needed when Port 0 is defined as an output
port.

• Port 0 of the 8051 has two main functions: To be used as a simple
input-output port and to access external memory in conjunction with
Port 2.

 Functions of Port 0
 Simple I/O port:

 When we use Port 0 as an input port, the internal latch should know
that it’s being used for input, and thus, a digital 1 (FFH) is written at the
port address of 80H. This turns off the transistors causing the pin to
float in high impedance state connecting it to the input buffer. We can
read data from ‘Read Pin Data’/’Read Latch Bit.’

 When we use Port 0 as an output port, the latch
programmed to 0 will turn on. Consequently, the FET
will connect to GND. We will require an external pull
up resistor(10k Ohm) here to give a logic ‘1’ for using
Port 0 as an output port.

 When the 8051 wants to access external memory, the
address for the memory generates due to Port 0 and
Port 2. We get the lower half of the address from Port
0 and the upper half from Port 2. This is done using
ALE pulses, which help to latch the address to the
external bus. Once done, the Port 0 goes back to
being an input port to read data from that memory.

 Working of port 0

 As mentioned above port zero has a lot up its sleeve, from reading data to addresses it
does a lot of things for the microcontroller. Therefore it is imperative for us to get a deeper
understanding of the workings of this port.

 To configure port 0 as an input port the internal bus writes 1 to the D flip flop and the
control pin is set to 0(Upper FET is OFF). The mux is connected to Q'(0) of the D flip flop
as the control pin is 0. Due to this, the pin is connected to the input buffer which can be
read to get the input data.

 To use the port as an output port 0 is written to the D flip flop with the control signal being
set to 0. This enables the lower FET and disables the upper FET due to this the pin gets
connected to the ground and a zero is written to the output device. To write a 1 to the
external device the microcontroller writes 1 to the D flip flop which drives the pin to a high
impedance state as it is not connected to either VCC or ground. To solve this problem a
pull-up resistor is connected to the output pin which pulls the value to 5v or logic 1.

 For reading Addresses or data from external memory the Control bit is set to set to 1 which
connects the Mux to Data/address pin. The ALE pin is used to latch the address and once
that is done the port is used for data transfer.

 What are the features and functions of Port 1 in 8051?
 Features of Port 1:
• Address is 90H
• Construction: Port 1 has one D latch, two unidirectional buffers, 1

FET, and one internal pull-up resistor at each pin.
• It has only one function – to act as an Input-Output port.
 The function of Port 1 – I/O port:
 When Port 1 is functioning in the capacity of an input port, a

digital ‘1’ (FFH) is written to the latch. At 90H. This turns off the
transistor, and the pin floats in a high impedance state.
Consequently, it connects to the input buffer.

 When Port 1 is functioning in the capacity of an output port, the
latch is given a ‘LOW’ signal (00H). This turns the FER (Field
Effect Transistor) o. The pull-up resistor is OFF, and the port is
used as an output port.

 What are the features and functions of Port 2 in 8051?

 Features of Port 2

• Address is 10H

• Construction: Port 2 has a D type latch, 1 FET, an internal pull-up resistor, two
unidirectional buffers, and a Control Logic block.

• Its main functions are kind of similar to those of Port 0. It can be used as an
input-output port. And can access external memory in conjunction with Port 0.

 Functions of Port 2

 I/O port:

 Quite similar to Port 0. The only difference here is that in Port 2, we use one
FET with an internal pull-up resistor instead of the two FETs we saw in Port 0.

 Memory Access:

 Port 2 is used in conjunction with Port 0 to generate the upper address of the
external memory location that needs to be accessed. However, one key
difference is that it doesn’t need to turnaround and get a 1 in the latch
immediately for input as in Port 0. It can remain stable.

 What are the features and functions of Port 3 in 8051?
 Features of Port 3
• Address is B0H
• Construction: The third Port of 8051 has a D-type latch. In

addition to that, it has three unidirectional buffers. A FET with an
internal pull-up resistor. Additionally, it also has a NAND gate
connected to the FET.

• Port 3 performs two main functions, as we will see below.
 Functions of Port 3
 I/O port
 Just like Port 2, Port 3 can function as an input-output port.
 Alternate SFR function
 The input to SFR 1, we get the output of latch as 1, which turns

on the NAND gate, and depending on the value of ‘Alternate
Output Pin,’ FET will be wither ON/OFF.

RXD: this is used for a serial input port

TXD: this is used for serial output port

INT0: this used for an external interrupt 0

INT1: this used for external interrupt 1

T0: Timer 0 external input

T1: Timer 1 external input

WR: external data memory write strobe

RD: external data memory Read strobe

INSTRUCTION EXAMPLE EXPLANATION

MOV MOV A,Port Moves data from a given
port to the accumulator

JNB JNB
Port,Address

Checks the value in the input
buffer. If the value is zero
then it transfers the control
to the given address

JB JB Port,Address Checks the value in the input
buffer. If the value is not
zero then it transfers the
control to the given address

CJNE CJNE
A,Port,Address

Checks the value in the input
buffer of a port. Compares it
to the value in the
accumulator. If the values
are not the same then the
control is transferred to a
given address

INSTRUCTION EXAMPLE EXPLANATION

ANL ANL P1, A Performs logical AND between
the value stored in the latch of
the port and the accumulator

ORL ORL P1, A Performs logical OR between
the value stored in the latch of
the port and the accumulator.
After this, it writes the new
value to the latch

XRL XRL P1, A Performs logical XOR between
the value stored in the latch of
the port and the accumulator.
After this, it writes the new
value to the latch

JBC JBC,Port,Add
ress

If the value at a given port is 1
then it jumps to a given
address and then clears the
latch

INSTRUCTION EXAMPLE EXPLANATION

CPL CPL,Port Complements the
data in the latch

MOV MOV Port,C Reads the value at the
latch of a given port
and then transfers it
to the carry flag

CLR CLR Port Clears the value
stored at the latch of
a port

SETB SETB Port Sets the value of a
latch

Design and Interfacing with
8051

 keypad interface

 7- segment interface

 LCD Interfacing

 Stepper motor Interfacing

 At the lowest level, keyboards are organized in a
matrix of rows and columns.

 The CPU accesses both rows and columns through
ports; therefore, with two 8-bit ports, an 8 x 8 matrix
of keys can be connected to a microprocessor.

 When a key is pressed, a row and a column make a
contact; otherwise, there is no

 In such systems, it is the function of programs stored
in the EPROM of the microcontroller to scan the keys
continuously, identify which one has been activated,
and present it to the motherboard. In this section we
look at the mechanism by which the 8051 scans and
identifies the key.

 4 x 4 matrix connected to two ports. The rows
are connected to an output port and the columns
are connected to an input port.

 If no key has been pressed, reading the input
port will yield 1 s for all columns since they are
all connected to high (Vcc).

 If all the rows are grounded and a key is
pressed, one of the columns will have 0 since the
key pressed provides the path to ground.

 It is the function of the microcontroller to scan
the keyboard continuously to detect and identify
the key pressed.

 Keypad is used as an input device to read the key
pressed by user and to process it.

 4x4 keypad consists of 4 rows and 4 columns.
Switches are placed between the rows and
columns. A key press establishes a connection
between corresponding row and column between
which the switch is placed.

 To read the key press, we need to configure the
rows as outputs and columns as inputs.

 Columns are read after applying signals to the
rows in order to determine whether or not a key
is pressed and if pressed, which key is pressed.

 Display units are the most important output
devices in embedded projects and electronics
products. 16x2 LCD is one of the most used
display unit. 16x2 LCD means that there are
two rows in which 16 characters can be
displayed per line, and each character takes
5X7 matrix space on LCD.

 LCD 16x2 is 16 pin device which has 8 data pins (D0-
D7) and 3 control pins (RS, RW, EN). The remaining 5
pins are for supply and backlight for the LCD.

 The control pins help us configure the LCD in
command mode or data mode. They also help
configure read mode or write mode and also when to
read or write.

 LCD 16x2 can be used in 4-bit mode or 8-bit mode
depending on the requirement of the application. In
order to use it we need to send certain commands to
the LCD in command mode and once the LCD is
configured according to our need, we can send the
required data in data mode.

 For initializing the LCD, the following are the
steps that are given below and these steps
are the same for almost all the applications.

 Send 38H to the 8-bit data line for
initialization

 Send 0FH for making LCD ON, cursor ON,
cursor blinking ON

 Send 06H for incrementing cursor position

 Send 01H for clearing the display and return
the cursor

 The logic state of these pins that make the
module to determine whether a given data
input is a data or command to be displayed.

 Make R/W low
 Make RS=1, if the data byte is a data to be

displayed and make
 RS=0, if the data byte is a command.
 Place data byte on the data register
 Then pulse E from high to low
 Repeat the above steps for sending other

data

 Seven segment displays internally consist of 8
LEDs. In these LEDs, 7 LEDs are used to indicate
the digits 0 to 9 and single LED is used for
indicating decimal point. Generally seven
segments are two types, one is common cathode
and the other is common anode.

 In common cathode, all the cathodes of LEDs are
tied together and labeled as com. and the anode
are left alone. In common anode, seven segment
display all the anodes are tied together and
cathodes are left freely. Below figure shows the
internal connections of seven segment Display.

 A stepper motor is a brushless and synchronous
motor which divides the complete rotation into
number of steps. Each stepper motor will have some
fixed step angle and motor rotates at this angle.

 To interface a Stepper Motor with 8051 two different
drivers: L293D and ULN 2003 are required.

 The main principle of these circuits is to rotate the
stepper motor step wise at a particular step angle.

 The step size of the motor is determined by the
number of phases and the number of teeth on the
rotor. Step size is the angular displacement of the
rotor in one step.

 P1.0, P1.1, P1.2 and P1.3 pins are used for controlling the
phases A1, A2, A3 and A4 of the stepper motor respectively.

 ULN2003 is used for driving the individual phases of
the stepper motor. ULN2003 is used for driving high current
loads such as relays and motors.

 ULN2003 has 8 individual channels each with 1A capacity. The
channels can be paralleled to increase the current capacity. Each
channels are fitted with individual freewheeling diodes.

 The ULN2003 is operated in current sinking mode. Each channel
is activated by giving a logic LOW at the corresponding input.

 For example if we make pin 1 of ULN2003 LOW, phase A1 of the
stepper motor gets switched ON.

Application of
Micro controllers

 Microcontroller is termed as “Computer-on-
a-Chip“. It is named so, because not only the
CPU, but RAM, ROM, I/O ports,
Timer/Counter, Serial I/Os all are put
together on a single microcontroller chip.
Microcontrollers are task specific and are
essentially used for making Embedded
Systems.

 The bits in microcontroller are 8-bits, 16-bits
and 32-bits microcontroller.

 In 8-bit microcontroller, the point when the
internal bus is 8-bit then the ALU is performs
the arithmetic and logic operations.

 The examples of 8-bit microcontrollers are
Intel 8031/8051, PIC1x and Motorola
MC68HC11 families.

 The 16-bit microcontroller performs greater
precision and performance as compared to 8-bit. For
example 8 bit microcontrollers can only use 8 bits,
resulting in a final range of 0×00 – 0xFF (0-255) for
every cycle.

 In contrast, 16 bit microcontrollers with its 16 bit
data width has a range of 0×0000 – 0xFFFF (0-
65535) for every cycle. A longer timer most extreme
worth can likely prove to be useful in certain
applications and circuits. It can automatically operate
on two 16 bit numbers.

 Some examples of 16-bit microcontroller are 16-bit
MCUs are extended 8051XA, PIC2x, Intel 8096 and
Motorola MC68HC12 families.

 The 32-bit microcontroller uses the 32-bit
instructions to perform the arithmetic and
logic operations.

 These are used in automatically controlled
devices including implantable medical
devices, engine control systems, office
machines, appliances and other types of
embedded systems.

 Some examples are Intel/Atmel 251 family,
PIC3x.

There are many applications of
AVR microcontroller; they are
used in home automation,
touch screen, automobiles,
medical devices and defense.

 PIC microcontrollers (Programmable Interface
Controllers), are electronic circuits that can
be programmed to carry out a vast range of
tasks. They can be programmed to be timers
or to control a production line and much
more.

 Arduino is based on the Atmel Atmega
series microcontrollers while PIC(Pheripheral
Interface Controller) is
a microcontroller family specially designed
for peripheral interfaces.

 Flash memory (program memory,
programmed using MPLAB devices)

 SRAM (data memory)

 EEPROM memory (programmable at run-time)

 Sleep mode (power savings)

 Watchdog timer.

 Various crystal or RC oscillator
configurations, or an external clock.

 Consumer Electronics Products:
 Toys, Cameras, Robots, Washing Machine, Microwave Ovens etc.

[any automatic home appliance]
 2. Instrumentation and Process Control:
 Oscilloscopes, Multi-meter, Leakage Current Tester, Data

Acquisition and Control etc.
 3. Medical Instruments:
 ECG Machine, Accu-Check etc.
 4. Communication:
 Cell Phones, Telephone Sets, Answering Machines etc.
 5. Office Equipment:
 Fax, Printers etc.
 6. Multimedia Application:
 Mp3 Player, PDAs etc.
 7. Automobile:
 Speedometer, Auto-breaking system etc.

