Programmable Logic Controllers
and Microcontrollers
(5t Sem)

Electrical Engineering Department,

N\ . Govt. Polytechnic Panchkula
M

Table of Contents

Chapter-1: Introduction to PLC
Chapter-2: Working of PLC
Chapter-3: Ladder Diagram Programming
. Chapter-4: Applications of PLCs
. Chapter-5: Introduction to SCADA

1.
2
3
4
5
6. Chapter 6: Micro Controller Series (MCS)-51
Over View

V4

8

Q.

]

Chapter-=7: Instruction Set and Addressing
Modes of 8051

. Chapter-8 :Assembly language programming
Chapter-9 : Design and Interfacing with 8051
0. Chapter-10 : Application of Micro controllers

CHAPTER -1

Introduction to
PLC

Concept of PLC

» A PROGRAMMARBLE LOGIC CONTROLLER (PLC)
is an industrial computer control system that
continuously monitors the state of input
devices and makes decisions based upon a
custom program to control the state of
output devices.

Their primary goal of PLC is

» To eliminate the high costs associated with
inflexible, relay-controlled systems

Building Blocks of PLC

PLC System

Basic PLC Elements

» The basic elements of a PLC include input
modules or points, a Central Processing Unit
(CPU), output modules or points, and
a programming device.

» The type of input modules or points used by
a PLC depend upon the types of input devices
used. Some input modules or points respond
to digital inputs, also called discrete inputs,
which are either on or off. Other modules or
inputs respond to analog signals.

PLC Input Circuit

» The primary function of a PLC’s input circuitry
is to convert the signals provided by these
various switches and sensors into logic
sighals that can be used by the CPU.

» The CPU evaluates the status of inputs,
outputs, and other variables as it executes a
stored program.

» The CPU then sends signals to update the
status of outputs.

Programming Device

» The programming device is used to enter or
change the PLC’s program or to monitor or
change stored values.

» Once entered, the program and associated
variables are stored in the CPU.

» In addition to these basic elements, a PLC
system may also incorporate an operator
interface device of some sort to simplify
monitoring of the machine or process.

Difference between relay and PLC

» The difference between a PLC and relay logic
is that a PLC is a programmable device where
as relay logic is a network of hardwired

electrical devices.

» Both a PLC and relay logic can perform logical
computation, but a PLC does it using a
microprocessor and relay logic does it using
electric circuits

Limitations of Relays

» Prior to PLCs, many control tasks were performed by contactors,
control relays and other electromechanical devices. This is often
referred to as hard-wired control.

» Circuit diagrams had to be designed, electrical components
specified and installed, and wiring lists created. If an error was
made, the wires had to be reconnected correctly. A change in
function or system expansion required extensive component
changes and rewiring.

» Requires periodic maintenance and testing.

» Relay operation can be affected due to ageing of the components
and dust, pollution resulting in spurious trips

» Operation speed for an electromagnetic relays is limited by the
mechanical inertia of the component

10

Advantages of PLC over
Electromagnetic Relays

» Smaller physical size than hard-wire
solutions.

» Easier and faster to make changes.

» PLCs have integrated diagnostics and override
functions.

» Diagnostics are centrally available.

» Applications can be immediately
documented.

» Applications can be duplicated faster and less
expensively.

11

PLC Size

» 1. SMALL

» it covers units with up to 128 1/0O’s and memories
up to 2 Kbytes.

» 2. MEDIUM

» They have up to 2048 1/O’s and memories up to
32 Kbytes.

» 3. LARGE

» They have up to 8192 1/0O’s and memories up to
750 Kbytes.

12

PLC Programming Languages

There are only 5 languages that are considered to
be standard languages for use on PLCs,
according to IEC section 61131-3.

» Ladder Diagram (LD)

» A sequential function chart
» Function Block Diagram

» Instruction List

» Structured Text

13

Ladder Diagram

» Ladder Diagram is the oldest PLC language.
This graphical programming language was
modeled from relay logic to allow engineers
and electricians to transition smoothly into

programming PLCs.

» Within Ladder, rungs and rails represent the
real world electrical connections. Specifically,

the vertical “rails’ re
of the device while t
connected to the rai

oresent the supply power
ne rungs that are

s are equal to the

amount of control circuits.

14

Sequential Function Charts

v

A sequential function chart is a graphical programming language
that mimics a flow chart. You use steps and transitions to get
output.

Steps are functions within the program and house events that are
activated based on state and other specified conditions.

Transitions are instructions based on true/false values that move
you from one step to another.

Branches are used to initiate multiple steps at a time. The
branches act like threads where functions can run concurrently.

All of these steps, transitions, and branches are housed in a
series of scripts that execute in a procedural manner. The visual
nature of the language allows users to monitor Iorocesses that
both heavily use conditional logic and run parallel instructions.
PLCs that are prone to suffering from bottlenecks can be more
intuitively maintained and trou%leshooted using the chart to
follow the logic of the program.

15

Function Block Diagram

» Block based programming languages are a tyBe of
graphical language that minimizes code into blocks,
which allows for a simple way to create executable
commands.

» FBD in particular describes a function between inputs
and outputs that are connected by connection lines.
The logic of the inputs and outputs are stored in
blocks. The blocks are programmed onto sheets and
the PLC scans these sheets in order or by specified
connections between blocks, much like procedural
languages.

» The I/0O focus mirrors that of ladder logic. Yet, the
code that the blocks contain allow engineers to
develop more complex batch control tasks among
other repeatable tasks.

16

Instruction List

» This is the PLC’s equivalent to assembly
language. This gives you immediate access to the
machine itself, which allows you to write code
that is compressed and fast. The code is
represented in the manner that the language’s
name suggests: in a list of commands.

» Structured Text is a high level language designed
to program PLCs. This is essentially the C++ of
the PLC world. Any PLC that requires complex
data handling will most likely use ST.

17

Structured Text

» Structured Text is a high level language
designed to program PLCs. This is essentially
the C++ of the PLC world. Any PLC that
requires complex data handling will most
likely use ST.

18

Advantages of PLCs

+ Less wiring.

« Wiring between devices and relay contacts are done in
the PLC program.

- Easier and faster to make changes.

- Trouble shooting aids make programming easier and
reduce downtime.

- Reliable components make these likely to operate for
years before failure.

19

PLC Manufacturer/Brands

AMERICAN

v Vv Vv Vv Vv Vv

EUROPEAN

4
4
4

JAPANESE

NoakwnE

POMMERONOE

Allen Bradley
Gould Modicon
Texas Instruments
General Electric
Westinghouse
Cutter Hammer
Square D

Siemens

Klockner & Mouller
Festo
Telemechanique
Toshiba

Omron

Fanuc

Mitsubishi

20

Applications of PLC

Manufacturing / Machining
Food / Beverage

Metals

Power

Mining

Petrochemical / Chemical

21

CHAPTER-2

Working of PLC

Major Components of a Common PLC

>

From
SENSORS

Pushbuttons,
contacts,
limit switches,
etc.

I

A CTUTZ"—

mrrcoop<Z

PROCESSOR

I»

H—C Uv-H4CO
mrCcOo=

Prepared by Alka Kalra

[—

To
OUTPUT

Solenoids,
contactors,
alarms
etc.

23

PLC Principle/Operation

» Read all field input devices via the input
Interfaces, execute the user program stored Iin
application memory, then, based on whatever
control scheme has been programmed by the
user, turn the field output devices on or off, or
perform whatever control is necessary for the
process application.

» This process of sequentially reading the inputs,
executing the program in memory, and updating
the outputs is known as scanning.

Prepared by Alka Kalra

PLC Operation

PHASE 1 - Input Status scan

» A PLC scan cycle begins with the CPU reading the status of its inputs.

PHASE 2- Logic Solve/Program Execution

» The application program is executed using the status of the inputs

PHASE 3- Logic Solve/Program Execution

» Once the program is executed, the CPU performs diagnostics and
communication tasks

PHASE 4 - Output Status Scan

» An output status scan is then performed, whereby the stored
output values are sent to actuators and other field output
devices. The cycle ends by updating the outputs.

Prepared by Alka Kalra

PLC Operation

» As soon as Phase 4 are completed, the entire cycle
begins again with Phase 1 input scan.

» The time It takes to implement a scan cycle is called
SCAN TIME.

o The scan time composed of the program_scan time, which is
the time required for solving the control program, and the I/O
update time, or time required to read inputs and update

outputs.

» The program scan time generally depends on the
amount of memory taken by the control program and
type of instructions used in the program. The time to
make a single scan can vary from 1 ms to 100 ms

Prepared by Alka Kalra

While the PLC is running, the scanning process includes the
following four phases, which are repeated continuously as
Individual cycles of operation:

27

Prepared by Alka Kalra

PLC WORKING

Signals
Stored
in Memory Input Signals
From Input
Devices
> CPUfeiches input oy g d o instructions
Input L
Memory > User Memory Programming
CPU \ dQViCQ
‘ | -\ CPU scans the external
CPU . | memory
updates the input e
memory OutPut Signals Mamery ’
to Output
Devices

Prepared by Alka Kalra

PLC WORKING

» The input sources convert the real-time
analog electric signals to suitable digital
electric signals and these signals are applied
to the PLC through the connector rails.

» These input signals are stored in the PLC
external image memory in locations known as
bits. This is done by the CPU

» The control logic or the program instructions
are written onto the programming device
through symbols or through mnemonics and
stored in the user memory.

Prepared by Alka Kalra

PLC WORKING

The CPU fetches these instructions from the user memory and
executes the input signals by manipulating, computing, processing
them to control the output devices.

The execution results are then stored in the external image
memory which controls the output drives.

The CPU also keeps a check on the output signals and keeps
updating the contents of the input image memory according to the
changes in the output memory.

The CPU also performs internal programming functions like setting
and resetting of the timer, checking the user memory.

Prepared by Alka Kalra

PLC Working

~ —/O_ — CPU fetches
CPU fetches o m—c

these signals control
instructions

from user
memory

/
Inputfrom Sensors or Output
Switches Signalsto
devices

Prepared by Alka Kalra

PLC Architecture

PROGRAM

REAL WORLD

! {

INPUT/QUTPUT

I CENTRAL PROCESSOR UNIT l

PLC Modules

» PLCs are capable of monitoring the inputs
continuously from sensors and producing the
output decisions to operate the actuators
based on the program. Every PLC system
needs at least these three modules:

» CPU Module

» Power Supply Module
» One or more 1/0O Module

Prepared by Alka Kalra

CPU/Procssor module

» CPU module consists of a central processor
and its memory. The Processor is responsible
for doing all the necessary computations and
data processing by accepting the inputs and

producing appropriate outouts.

Prepared by Alka Kalra

Function of CPU/Processor

» The main function of the microprocessor is to
analyze data coming from field sensors through
iInput modules, make decisions based on the
user’s defined control program and return signal
back through output modules to the field devices.

» Fleld sensors(Input): switches, flow, level,
pressure, temp. transmitters, etc.

» Fleld output devices: motors, valves, solenoids,
lamps, or audible devices.

Prepared by Alka Kalra

Memory Structures

» These PLCs use retentive memory to save
user programs and data when the power
supply breaks or fails and to resume the
execution of a user program ones the power
IS restored.

» Thus, these PLCs do not need any use of a
keyboard or monitor for re programming the
processor each time.

» The retentive memory can be implemented
with the use of long-life batteries, EEPROM

modules and flash memory methods.

Prepared by Alka Kalra

Memory Structures/Designs

» VOLATILE.

» A volatile memory is one that loses its stored

Information when
» Even momentary

power Is removed.
osses of power will erase any

Information storeo
memory chip.

or programmed on a volatile

» Common Type of Volatile Memory
» RAM. Random Access Memory(Read/Write)

Prepared by Alka Kalra

RAM

» Read/write indicates that the information stored in
the memory can be retrieved or read, while write
iIndicates that the user can program or write
iInformation into the memory.

» The words random access refer to the abllity of
any location (address) in the memory to be
accessed or used. Ram memory is used for both
the user memory (ladder diagrams) and storage
memory in many PLC'’s.

Prepared by Alka Kalra

CMOS-RAM Memory

» The CMOS-RAM (Complimentary Metal Oxide
Semiconductor) is probably one of the most
popular. CMOS-RAM is popular because it has a
very low current drain when not being accessed
(15microamps), and the information stored in
memory can be retained by as little as 2Vdc.

» RAM memory must have battery backup to retain
or protect the stored program.

Prepared by Alka Kalra

Memory Design

» NON-VOLATILE

» Has the ability to retain stored information when
power is removed, accidentally or intentionally.
These memories do not require battery back-up.

» Common Type of Non-Volatile Memory
» ROM, Read Only Memory

» Read only indicates that the information stored In
memory can be read only and cannot be
changed. Information in ROM is placed there by
the manufacturer for the internal use and
operation of the PLC.

Prepared by Alka Kalra

Non-Volatile Memory

» PROM, Programmable Read Only Memory

» Allows Initial and/or additional information to be
written into the chip.

» PROM may be written into only once after being
received from the PLC manufacturer;
programming is accomplish by pulses of current.

» The current melts the fusible links in the device,
preventing it from being reprogrammed. This type
of memory Is used to prevent unauthorized
program changes.

Prepared by Alka Kalra

Non Volatile Memory

EPROM, Erasable Programmable Read Only Memory

|deally suited when program storage Is to be semi-
permanent or additional security is needed to prevent
unauthorized program changes.

The EPROM chip has a quartz window over a silicon
material that contains the electronic integrated circuits.
This window normally is covered by an opaque
material, but when the opaque material is removed
and the circuitry exposed to ultra violet light, the
memory content can be erased.

The EPROM chip is also referred to as UVPROM.

W
\!

Prepared by Alka Kalra

EEPROM Memory

Electrically Erasable Programmable Read Only

Memory

» Also referred to as E°PROM, is a chip that can be

programmed using a stand
device and can be erased
neing applied to the erase

ard programming
oy the proper signal

oIN.

» EEPROM Is used primarily as a non-volatile
packup for the normal RAM memory. If the
orogram in RAM is lost or erased, a copy of the
orogram stored on an EEPROM chip can be down
oaded into the RAM.

Prepared by Alka Kalra

Memory

» Processor module includes both ROM and RAM
memories.

> ROM (Program Memory/System Memory) contains the
operating system, driver and application programs,

- RAM (Data Memory/Application Memory)stores user-
written programs and working data.

» The program information or the control logic is stored
in the user memory or the program memory from
where the CPU fetches the program instructions.

» The input and output signals and the timer and counter
signals are stored in the input and output external
image memory respectively.

Prepared by Alka Kalra

Memory Map Organization

/

*System memory includes an area called the EXECUTIVE,
composed of permanently-stored programs that direct all system
activities, such as execution of the users control program,
communication with peripheral devices, and other system
activities.

*The system memory also contains the routines that implement
the PLC’s instruction set, which is composed of specific control
functions such as logic, sequencing, timing, counting, and
arithmetic.

*System memory is generally built from read-only memory
devices.

*The application memory is divided into the data table area and
user program area.

*The data table stores any data associated with the user’s control
program, such as system input and output status data, and any
stored constants, variables, or preset values. The data table is
where data is monitored, manipulated, and changed for control
purposes.

*The user program area is where the programmed instructions
entered by the user are stored as an application control program.

Prepared by Alka Kalra

45

BUS or Rack

» In some modular PLCs bus or rack is provided
in the backplane of the circuit into which all
the modules like CPU and other I/0O modules
are plugged to the corresponding slots.

» This bus enables the communication between
CPU and I/O modules to send or receive the
data.

» This communication is established by

addressing the /O modules according to the
location from CPU module along the bus.

Prepared by Alka Kalra

BUS or Rack

» Suppose, if the input module is located in the
second slot,

> the address must be 12:1.0 (second slot first
channel only as an example).

» Some buses provide necessary power to 1/0O
module circuitry, but they do not provide any
power to sensors and actuators connected to
/O modules

Prepared by Alka Kalra

| /O Structures/Modules

» The I/O interface section of a PLC connects it to

external field devices.

» The input and out modules of the
programmable logic controller are used to
connect the sensors and actuators to the
system to sense the various parameters such
as temperature, pressure and flow, etc.

» These I/O modules are of two types: digital
or analog.

Prepared by Alka Kalra

/O interface

- The main purpose of the I/O interface is to
condition the various signals received from or sent
to the external input and output devices.

Input modules converts signals from discrete or
analog input devices to logic levels acceptable to
PLC'’s processor.

Output modules converts signal from the

processor to levels capable of driving the
connected discrete or analog output devices.

Prepared by Alka Kalra

|/O Structure/MODULE

USE TO DROP
THE VOLTAGE
TO LOGIC LEVEL

—

O——
Current
FROM INPUT Limiting
DEVICE Resistor
O——

IS NEEDED TO:
¢ Prevent voltage
transients from damaging
the processor.

eHelps reduce the effects
of electrical noise

TO
PROCESSOR

Prepared by Alka Kalra

Light emitting Pholo-
Ii‘li:}!sé Lr?nsistm PLC

T Input... module { _F i

1 —8 . .
w PLC ignal

<7 s 2 Sz | e
2 — I
3 — 6 L
4 5

Figure 1.6a Dual-optocoupler |C

, | Fiqure 1.6b Basic DC input circuit
in 8-pin DIP | P
5\ \ Prepared by Alka Kalra

Input Connections

L1 Lz

AC DC

Prepared by Alka Kalra

||i—.|.:

DC/AC Output Wiring Connections

+ DC Power
Supply =
L1 AC Output Module L2
DC Output Module ! 120V ac J
Pt o |OuTO 7HT o |ouTo
A o |OUT1 O lout1
M a
A4 O |ouT2 \ o |0uT2
o |ouT3 o |0UT3
/1/. 0 |ouT4 L__/V— o |ouT4
(0] 0
0 0
0 0
C Com

Prepared by Alka Kalra

DIFFERENT TYPES OF I/O Structures

Pilot Duty Outputs

» Outputs of this type typically are used to drive high-current electromagnetic
loads such as solenoids, relays, valves, and motor starters.

These loads are highly inductive and exhibit a large current.
General - Purpose Outputs

» These are usually low- voltage and low-current and are used to drive indicating
lights and other non-inductive loads.

» Noise suppression may or may not be included on this types of modules.
Discrete Inputs

» Circuits of this type are used to sense the status of limit switches, push buttons,
and other discrete sensors.

» Noise suppression is of great importance in preventing false indication of inputs
turning on or off because of noise.

Prepared by Alka Kalra

Analog I/O Circuits

» Circuits of this type sense or drive analog signals.
» Analog inputs come from devices, such as

t
t

nermocouples, strain gages, or pressure sensors,
nat provide a signal voltage or current that Is

derived from the process variable.
» Standard Analog Input signals: 4-20mA; 0-10V

» Analog outputs can be used to drive devices such
as voltmeters, X-Y recorders, servomotor drives,
and valves through the use of transducers.

» Standard Analog Output signals: 4-20mA,; 0-5V; O-
10V

Prepared by Alka Kalra

Special - Purpose I/O

» Circuits of this type are used to interface PLCs to
very specific types of circuits such as
servomotors, stepping motors PID (proportional
plus integral plus derivative) loops, high-speed
pulse counting, resolver and decoder inputs,
multiplexed displays, and keyboards.

» This module allows for limited access to timer and
counter presets and other PLC variables without
requiring a program loader.

Prepared by Alka Kalra

OUTPUTS

INPUTS MOTOR

LAMP

PUSHBUTTONS

g PLC

)
A4

Prepared by Alka Kalra

PROGRAMMING DEVICE

» It Is used to enter the desired program that will
determine the sequence of operation and control
of process equipment or driven machine.

» Also known as:
Industrial Terminal (Allen Bradley)

Program Development Terminal (General
Electric)

Programming Panel (Gould Modicon)
Programmer (Square D)

Program Loader (Idec-lzumi)
Programming Console (Keyence / Omron)

Prepared by Alka Kalra

PROGRAMMING DEVICE TYPES

Various types of programming devices are used to enter,
modify and troubleshoot a PLC program.

Hand held unit with LED / LCD display
Personal Computer (PC)

Desktop type with a CRT display /Desktop Console

Hand held unit with LED / LCD display

» In the handheld programming device method, a
proprietary device is connected to PLC through
a connecting cable.

» This device consists of a set of keys that allows
to enter, edit and dump the code into the PLC.

» These handheld devices consist of small display
to make the instruction that has been
programmed visible.

» These are compact and easy to use devices, but
these handheld devices have limited capabilities.

Prepared by Alka Kalra

Desktop consoles

» Desktop consoles are likely to have a visual
display unit with a full keyboard and screen
display.

» Keyboard and monitor are used for
programming.

» Programming Unit communicated with PLC
through serial or Parallel port.

Prepared by Alka Kalra

Personal Computer(PC)

PC is used for programming the PLC in conjunction with the
software given by the manufacturer.

By using this PC we can run the program in either online or offline
mode, and can also edit, monitor, diagnose and troubleshoot the
program of the PLC.

The way of transferring the program to the PLC is shown in the
above figure wherein the PC consists of program code
corresponding to control application which is transferred to the
PLC CPU via programming cable.

. A major advantage of using a computer is that the program can
be stored on the hard disk or a CD and copies can be easily made.

Prepared by Alka Kalra

PLC Communications Ports
Application/Use

Changing resident PLC programs -
uploading/downloading from a supervisory
controller (Laptop or desktop computer).

Forcing I/O points and memory elements from a
remote terminal.

Linking a PLC into a control hierarchy containing
several sizes of PLC and computer.

. Monitoring data and alarms, etc. via printers or
Operator Interface Units (OlUs).

Prepared by Alka Kalra

PLC Communications Standards

RS 232
Used in short-distance computer communications,
with the majority of computer hardware and
peripherals. Has a maximum effective distance of
approx. 30 m at 9600 baud.

RS 422 / RS 485

Used for longer-distance links, often between
several PCs In a distributed system.

RS 485 can have a maximum distance of about 1000
meters.

Prepared by Alka Kalra

Local Area Network(LAN)

Local Area Network provides a physical link between all
devices plus providing overall data exchange
management or protocol, ensuring that each device
can “talk” to other machines and understand data
received from them.

LANS provide the common, high-speed data
communications bus which interconnects any or all
devices within the local area.

LANs are commonly used in business applications to
allow several users to share costly software packages
and peripheral equipment such as printers and hard
disk storage.

Prepared by Alka Kalra

Power Supply Module

» A PLC power supply is the workhorse of
the PLC system. It converts your line voltage, 120 or
240 volts AC, to a lower DC voltage, commonly 24 volts
DC. This DC voltage is then sent into the rack
to power the rest of the PLC components.

» The output 5V DC drives the computer circuitry, and in
some PLCs 24DC on the bus rack drives few sensors
and actuators.

Prepared by Alka Kalra

PLC Power Supply

Transformer Rectified Filtered

~ 120 VAC

Prepared by Alka Kalra

PLC Power Supply

» Line voltage is stepped down with a
transformer, rectified to convert it to DC,
filtered with capacitors, and protected during
this process. All of this is packed into that
small looking power supply.

» This DC voltage is used to power the rest of
the PLC and components.

» The common current ratings for PLC’s are
anywhere from 2 to 10 amps for smaller
systems and up to 50 amps for larger, more
powerful controllers.

Prepared by Alka Kalra

Criteria for Selection a PLC/Specifications
Number of logical inputs and outputs

»This specifies the number of 1/O devices that can be
connected to the controller.

»There should be sufficient I/O ports to meet present
requirements with enough spares to provide for
moderate future expansion.

Prepared by Alka Kalra

Specifications

» MEMORY CAPACITY
The amount of memory required for a particular
application is related to the length of the program
and the complexity of the control system.

» Simple applications having just a few relays do not
require significant amount of memory.

» Program length tend to expand after the system
nave been used for a while.

» It Is advantageous to a acquire a controller that
nas more memory than is presently needed.

Prepared by Alka Kalra

Specifications

OUTPUT-PORT POWER RATINGS

»Each output port should be capable of supplying sufficient
voltage and current to drive the output peripheral connected
to it.

Scan Time

»This Is the speed at which the controller executes the relay
ladder logic program. This variable is usually specified as the
scan time per 1000 logic nodes and typically ranges from 1 to
200 milliseconds.

Prepared by Alka Kalra

PLC Communications

Programmable Controllers and Networks

Dedicated Network System of Different Manufacturers

Manufacturer Network
Allen-Bradley Data Highway
Gould Modicon Modbus

General Electric GE Net Factory LAN
Mitsubishi Melsec-NET
Square D SY/NET

Texas Instruments TIWAY

Prepared by Alka Kalra

Specifications

» Communications Port
» RS-232, RS 422 /| RS 485,LAN

» Software
- 1.

- 2.
- 3.
- 4.
- 5.
- 6.
- 6.

Allen-Bradley — Rockwell Software RSLogix500

Modicon - Modsoft

Omron - Syswin

GE-Fanuc Series 6 — LogicMaster6
Square D- PowerLogic

Texas Instruments — Simatic
Telemecanique — Modicon TSX Micro

Prepared by Alka Kalra

Practical Design Approach
A Detailed Design Process

1. Understand the process
2. Hardware/software selection

3. Develop ladder logic
4. Determine scan times and memory requirements

PLC Status Indicators

1.
2.
3.
4.

Power On

Run Mode
Programming Mode
Fault

Prepared by Alka Kalra

Troubleshooting PLC System

1. Look at the process

2. PLC status lights
- HALT - something has stopped the CPU
* RUN - the PLC thinks it is OK (and probably is)

- ERROR - a physical problem has occurred with the
PLC

3. Indicator lights on I/O cards and sensors

4. Consult the manuals, or use software if
available.

5. Use programming terminal / laptop.

Prepared by Alka Kalra

Chapter 3

Ladder Diagram Programming

Basic Instruction Example-1

v Vv Vv Vv

Problem Statement :

Providing lubricant for the gear box before the lathe spindle starts to run
which aims to ensure that the oil pump motor starts first and the main motor
starts subsequently.

Number of PLC Inputs Required

X0 - START pushbutton to Start Oil Pump Motor
X1 - START pushbutton to Stop Main Motor

X2 - STOP pushbutton to Stop Oil Pump Motor
X3 - STOP pushbutton to Stop Main Motor

Number of PLC Outputs Required

YO - Oil Pump Motor =
Y1 - Main Motor || = START STOP
v < Main Motor

Main Motor

PLC Ladder Programming
Description

This program is a typical application of the conditional
control circuit.

YO = ON when Oil Pump START button is pressed.
Therefore, the oil pump will start to provide lubricant
for the gear box of main motor(Y1)

) Under the precondition of the operating state of the
Oil pump, the main motor (Y1) will be ON when the Main
motor START button is pressed.

v

) During the operation of main motor (Y1), oil pump
(Y0) needs to nrovide lubricant continuouslv.

O =g = s TOP
but = | - stopped
whe

Basic Instruction Example- 2

» Problem Statement: Detecting the standing
pottles on the conveyor and pushing falling
pottles in tray.

Output Pushing Bottles

0 Standing Bottle

Ladder Program

Number of PLC Inputs Required
X0 - Proximity Sensor to sense bottom of the Bottle i.e. X0 = ON

when the detected input signal from the bottle-bottom is
sheltered.

X1 - Proximity Sensor to sense upper part of the Bottle i.e. X1 = ON
when the detected input signal from the bottle-neck is sheltered.

Number of PLC Outputs Required

YO - To operate Pushing Cylinder/Rod

X1

Program Description

» If the bottle on the conveYor belt is upstanding, the input signal
from monitoring photocell at both bottle-bottom and bottle-
neck will be detected. In this case, XO = ON, and X1 = ON. The
normally open (NO) contact X0 will be activated as well as the
normally closed (NC) contact X1. YO remains OFF and pneumatic
pushing pole will not perform any action.

» If the bottle from the conveyor belt is down, only the infaut
signal from monitoring photocell at the bottle-bottom will be
detected. In this case, X0 = ON, X1 = OFF. The state of output
YO will be ON because the NO contact X0 activates and the NC
contact X1 remains OFF. The pneumatic pushing pole will push
the fallen bottle out of the conveyor belt.

Counter Programming Example

» PLC Ladder Practice Problem:

» The production line may be powered off accidentally or
turned off for noon break. The program is to control the
counter to retain the counted number and resume counting
after the power is turned ON again. When the daily production
reaches 500, the target completed indicator will be ON to
remind the operator for keeping a record. Press the Clear
button to clear the history records. The counter will start
counting from 0 again.

Daily Production Counter

“ =% RESET Clear
T
X1

UP counter Example

Latched 16 bit UP counter
» _Number of PLC Inputs Required

» X0 - Product Detecting Sensor.
» Number of PLC Outputs Required

YO - Production Counter Target Completed.
Number of PLC Counter Required:

v

C120 - 16 Bit Latched Counter. (Max Count =32,768)

K

X1 - Production Counter RESET/Clear

Product
Sensor

C120
o

CNT

€120

K&00

Counter

11
Counter

X1

{ YD

Target
Comp

K5

RST

RESET !
Clear

c120

Counter

Program Description

» The latching counter is demanded for the
situation of retaining data when power-off.

» When a product is completed, C120 will count
for one time. When the number reaches
500, target completed indicator YO will be
ON.

» For different series of PLC, the setup range of
16-bit latching counter is different.

Timer Programming Example

» Enabling the indicator to be ON immediately
when switch pressed and OFF after a 5 sec
delay by the switch.

(t— 5s =

X1

TO

Y1-

PLC Ladder Program Description

» Number of PLC Inputs Required

X1 - Start Switch.
» Number of PLC Outputs Required

Y1 - Output Indicator
» Number of PLC Timer Required

TO - 5 second Timer, 100 ms Time Base. (See K50 Preset Value for Timer)

When X1 = ON, TMR instruction will be executed. Timer T1 will be ON and
start counting for 3 sec. When T1 reaches its set value, the NO (Normally
Open) contact T1 will be activated and indicator Y| will be ON.

When X1 = OFF, TMR instruction will not be executed. Timer T1 will be OFF
and so will NO contact T1. Therefore, the indicator Y1 will be OFF.

Ladder Program

b T1

| ¥
SWITCH [Timer Outout

Indic#or

Y1
Dutput
#nmcatm

%l 4 "

. ' ™R T K50
BWITCH Qubbut Timer

Indicator

Comparison Instruction Example

» A practical application for a comparative function is
something called alternating motor control, where the run-
times of two redundant electric motors are monitored, with

the PLC determining which motor to turn on next based on
which maotar ha< riin the leact

Real-world I/0O wiring

Discrete input Discrete output

"Start" pushbutton card card Motor "A"
contactor coil

* o IN_switch_Start OUT_motor_A

.) Motor "B"
Stop" pushbutton contactor coil

IN_switch_Stop OUT_motor_B

Description

» In this program, two retentive on-delay timers keep track of each
electric motor’s total run time, storing the run time values in two
registers in the PLC’s memory:

» Motor A runtime and Motor B runtime. These two integer values
are input to the “greater than” instruction box for comparison.

» If motor A has run longer than motor B, motor B will be the one
enabled to start up next time the “start” switch is pressed.

» If motor A has run less time or the same amount of time as
motor B (the scenario shown by the blue-highlighted status
indications), motor A will be the one enabled to start.

» The two series-connected virtual contacts OUT motor A and OUT
motor B ensure the comparison between motor run times is not
made until both motors are stopped.

» If the comﬁarison were continually made, a situation might arise
where both motors would start if someone happened to press
the Start pushbutton with one motor is already running.

Ladder Program

Pl C prograrnm
IN_switch_ Stop
4)
N

IN_switch_ Start A morethan_B
] A/

OUT_motor_ A
EN ENO

I I
|
TON

— Motor A runtime

ET

OUT_motor_B

IN_switch_Stop
{)
LN

IN_switch_ Start A morethan_B
| | 4+
I I I
OUT_motor_B
| EN ENO
I~ Q
—HPT ET - Motor_B_runtime
OUT_motor_ A OuUT_motor_ B
 H/k H/E EN ENO|
G T A morethan_B
Motor_A_runtime — [N Q 4< >7
INT = IN2
Motor_B_runtime — |[N2

e

CHAPTER 4
Applications of PLCs

Automation of product packaging

» Product packaging is one of the most
frequent cases for automation in industry.

» It can be encountered with small machines
(ex. packaging grain like food products) and
large systems such as machines for
packaging medications.

» Example we are showing here solves the
classic packaging problem with few elements
of automation.

Automation of product packaging

apple
motor

conveyor
IRO10.00

Sensor for

CONTROL PAMEL
START STOPF

T1®©T2

IROO0.00 1IRO0O0.01

Three WayTraffic Light Control
using PLC

3 - Way Traffic Light Control using PLC

I InstrumentationTools.com

Traffic Light Control using PLC

S.no Address Name Input/Output
1 1:0/0 Start Input

2 1.0/1 Stop Input

3 B3.0 Memory Memory
4 0:0/0 West Green Output

5 0:0/1 East Red Output
6 0:0/2 North Red Output

7 0:0/3 East yellow Output
8 0:0/4 East Green Output
9 0:0/5 West Red Output
10 0:0/6 North Yellow Output
11 0:0/7 North Green Output
12 0:1/0 West Yellow Output

Traffic Light Control using PLC

» They are so many ways to write a program for
traffic light control ex: sequencer output
method but in this normal input, outputs and
timers are used.

» Timers are used to give time delay for output
to turn ON and OFF.

» Reset coil is used at the end to run the
program continuously.

» Comparator blocks are used to reduce the
number of timers used.

Steps or sequence of outputs to turn ON

Swo | east | west | owmH-
R G R

oo U A W N =
D EEN G) aE <
< BN 0 Eos O
Q) PN < BN O

.

Car Parking System

» We are dealing with a simple system that can
control 100 car at the maximum. Each time a
car enters, PLC automatically adds it to a total
sum of other cars found in the garage. Each
car that comes out will automatically be taken
off. When 100 cars park, a signal will turn on
signalizing that a garage is full and notifying
other drivers not to enter because there is no
space available.

Automation of parking garage

car

enters

= .
£

fh-———-£3- st #
ZH~ Iy Z
] “®- Mo more place -
= - =
Z Z
- - >
”ﬁ parking garage "'ﬁ
] for 100 cars . “
Z Z
. A A
) :

.

_ =

Bl ¢

\ 4

car comes

out

PLC ladder logic for washing

machine

FB ’
Storage
CALL, Circuit |—V

FB; |
Storage Control
CALL, Circuit > Circuit

DC

UP

DOWN

Door
Mechanism

Forward & Reverse of DC motor:

» DC motors are totally different from AC
motors. They have commutator, field winding
and armature winding. The DC supply will be
given to the field winding and armature
winding. You can reverse the direction for DC
motor in two ways.

Forward & Reverse of DC motor

_DC Motor Forward and Reverse Direction‘

Forward Direction Reverse Direction Reverse Direction
Armature Terminal Armature Terminal Armature Terminal
+ + -
= DC = DC + DC
Motor Motor Motor
+ B +
- + -
Field Terminal Field Terminal Field Terminal
Method-1 Method-2

(Changing Field Polarity) (Changing Aramature polarity)

Forward & Reverse of DC motor

» By C
or fi

nanging the supply Polarity in field windin
ed supply. Field terminal consist of F1 an

F2. Normally, in forward direction the DC supply

will

pe given such as F1 - Positive and F2 -

Negative, to change the direction the polarity
should be F1- Negative and F2 - Positive.

» Also in same way we can change the direction of
DC Motor by changing the polarity of the
armature winding. Armature terminal consist of
Al and A2. Normally, for forward direction the
DC supply will be given such as A1 - Positive and

A2 -

Negative, to change the direction the

polarity should be A1- Negative and A2 -
Positive.

Direct-On-Line (DOL) starter

» One method of starting electric motors is
using direct on line (DOL) or across the line
starter. In this method full line voltage is
applied to the motor terminals. This is
simplest type of motor starter.

DOL Starter

)

DOL motor starter contains fuse and over load
relay (OLR) for protection purpose. The starter
can be contain momentary contact or maintained
contact push buttons. The example considered
here is momentary contact push buttons. For
starting purpose normally open (NO) push button
is preferred whereas normally closed (NC) push
button is used to stop the motor.

The excessive supply voltage drop causing high
inrush current is the criteria to limit the use o
DOL starter. Conveyor motors, water pumps are
the applications where DOL starters are used.

DOL Starter

OLR

Ph f }

Fuse

Stop PB 3

<
Start PB o\ ‘I\ Relay/Contactor
Contact

Contactor/Relay []

Control Circuit for DOL Starter

e

Sequence of Events

» Listing of Input and Output devices:
Inputs: PB1- To start the motor
PB2- To stop the motor
Output: M1- Motor

1. When Start push button (PB1) is pressed, Motor (M1) has
to start.

2. If Start pushbutton (PB1) is released and Stop
pushbutton (PB2) is not pressed, Motor (M1) should remain
on.

3. When Stop push button (PB2 is pressed, Motor (M1) has
tol stop.

4. If stop push button is released and start is not pressed
(released) motor shouldl remain off.

DOL Starter

CHAPTER 5
Introduction to SCADA

SCADA

» SCADA is the acronym for Supervisory Control
And Data Acquisition. It is generally used for
industrial control systems.

» Thus, it is not a comprehensive control
system but it rather operates as supervisory
software superior to PLCs and other devices.

SCADA system

» A SCADA system is a common process
automation system which is used to gather data
from sensors and instruments located at remote
sites and to transmit and display this data at a
central site for control or monitoring purposes.

» Common analog signals that SCADA systems
monitor and control are levels, temperatures,
pressures, flow rate and motor speed. Typical
digital signals to monitor and control are level
switches, pressure switches, generator status,
relays & motors.

» The collected data is usually viewed on one or
more SCADA Host computers located at the
central or master site.

Features of SCADA

1. Analog inputs for live monitoring

» Analog inputs allow you to monitor real-time
data across your network.

» Many SCADA systems will only have discrete
inputs - which are digital and can only tell you if
something is "on" or "off."

» An analog input will be able to tell you precise
values, meaning you can have accurate data
about whatever you're monitoring.

» Graphical web interface is used for easy-to-use

interface system of SCADA

Control relays for remote access and
control

» By having control relays on your SCADA
system, you'll be able to remotely control any
device in your network that is normally
operated by a button or a switch.

» You'll be able to start equipment, open or
close doors, or turn on lights.

» Instead of driving long distances to perform
these simple tasks, you can do them right
from your desk - without wasting time or
money behind the windshield of a truck.

Functions of SCADA

» All the equipment connected
through machine control are operated
through instruction sent over the web. The
processing unit analyses the data and
supervises the healthy functioning of the
signals transmitted in the entire unit. The
data is stored for valuation in a distributed
database. The acquired data also has
reference metadata stored for in the different
database such as a programmable logic
controller (PLC).

How does it work?

» The complete SCADA systems has four
significant units namely - data
communication, data acquisition, information
or data presentation and monitoring and
control system. With complete symphony in
the above four mentioned units, the entire
operation of the automation system can be
monitored.

How does it work?

» The data acquisition system fetches real-time
data from all the connected machine units.
The data reports about the status of all the
components and sensors, where data
communication network comes into play. The
system ensures accuracy in data being
transferred through the internet protocol.
Once the data is collected, the processing
unit analyses the data and presents it to the
operator through Human-Machine
Interface (HMI).

Scope of SCADA

» This is the reason why many more enterprises are
looking for automating their industrial processes.

» With the Industrial Internet of Things taking the
front seat, it is essential to look for companies
helping businesses step towards automation.
Schneider

» Electric India is one of the significant names in
the research and development of the automation
industry. It has not only brought these systems
to common units but also helps the employees to
up skill their knowledge by training them how to
operate the machinery.

Elements of a SCADA system

» HMI

» RTU

» MTU

» Data transmission

.

Elements of a SCADA system

RTLE #1 R i

HMI unit

» A Human - Machine Interface (HMI) is the

apparatus which presents process data to a
numan operator, and through this, the
numan operator monitor and control the
orocess. HMI offers real-time monitor of data
about the process and through which an
operator can send commands to the
controller. Input devices such as the
keyboard, mouse, trackballs are available in
this section.

MTU:

» MTU (master control unit), which is the
system controller. Some industries use the
term “host computer” instead of MTU.

» MTU communicates with the RTU that is
located away from the central location. There
can be many RTUs in the field, MTU can
monitor and control the field using the
scheduled program even when the operator is
not present. Changes can be done in the
process from the MTU end, can read some
process parameter.

RTU

» Remote terminal unit (RTU) connection to
sensors in the process and converting
sensors signals to digital data and sending
digital data to the supervisory system.

» RTU communicate with the MTU using
modulated signal. RTU receives the
modulated data from MTU and connection
can be through cable or radio.

» RTU field device connection is through
cables. RTU supplies both electrical power
and actuator signal to the field device.

Advantages of SCADA

» Long distance monitoring
» Long distance training
» Protection against terrorism/vandalism-alarm

» Data management (engineering and
operations)

» Automated operations with real-time control

» Reliability and Robustness (very large
installed base, mission-critical processes)

Application Of SCADA

» SCADA systems are used to control and
monitor physical processes, examples of
which are transmission of electricity,
transportation of gas and oil in pipelines,
water distribution, traffic lights, and other
systems used as the basis of modern society.

Application of the System

» Although this is a new technology,
businesses have already leveraged the
technology in both the public and private
sector. It has brought about immense
satisfaction in the operation managers
because the system makes the production
line foolproof.

» This also streamlines packaging and delivery
lines following the processes. The overall
automation and process control has helped to
save a significant amount of money and time.

SCADA Application Example

» A real world SCADA system can monitor and
control hundreds to hundreds of thousands
of 1/0O points. A typical Water SCADA
application would be to monitor water levels
at various water sources like reservoirs and
tanks and when the water level exceeds a

oreset threshold, activate the system of

oumps to move water to tanks with low tank
evels.

CHAPTER 6

Micro Controller Series
(MCS)-51 Over View

Why do we need to learn
Microprocessors/controllers?

» The microprocessor is the core of computer
systems.

» Nowadays many communication, digital
entertainment, portable devices, are
controlled by them.

» A designer should know what types of
components he needs, ways to reduce
production costs and product reliable.

» Hardware :Interface to the real world
» Software :order how to deal with inputs

Elements of
microprocessor/Microcontroller

» CPU: Central Processing Unit
» 1/O: Input /Output

» Bus: Address bus & Data bus
» Memory: RAM & ROM

» Timer

» Interrupt

» Serial Port

» Parallel Port

ROM, 1/0 on CPU chip itself
: Intel’s 8085,8086, Motorola’s 680x0

Microprocessor vs. Microcontroller

Microprocessor

» CPU is stand-alone, RAM,
ROM, I/O, timer are separate

» Designer can decide on the
amount of ROM, RAM and
1/O ports.

» expansive
» versatility
» general-purpose

Microcontroller

- CPU, RAM, ROM, 1/O and

timer are all on a single chip

- fix amount of on-chip ROM,

RAM, I/O ports

- for applications in which cost,

power and space are critical

. single-purpose

8051 Basic Component

» 4K bytes internal ROM

» 128 bytes internal RAM

» Four 8-bit I/0 ports (PO - P3).
» Two 16-bit timers/counters

» One serial interface

CPU | RAM| ROM

A single chip
Serial .
IP/oc:t Timerl COM Microcontroller
Port

Block Diagram

External Interrupts

4k
ROM

CPU

7?

128 bytes
RAM

T

Timer 1
Tmer Z

T

|

U

4 1/0 Ports

JITT

PO P2 P1
Addr/Data

P3

U

Serial

||

TXD RXD

Other 8051 featurs

» only 1T On chip oscillator (external crystal)
» 6 interrupt sources (2 external , 3 internal, Reset)

» 64K external code (program) memory(only
read)PSEN

» 64K external data memory(can be read and write) by
RD,WR

» Code memory is selectable by EA (internal or

external)

We may have External memory as data and code

Comparison of the 8051 Family Members

89XX ROM RAM Timer Int IO pin | Other
Source

8951 4k 128 2 6 32 :
8952 8k 256 3 8 32 -
8953 12k 256 3 9 32 WD
8955 20k 256 3 8 32 WD
898252 8k 256 3 9 32 ISP
891051 1k 64 1 3 16 AC
892051 2k 128 2 6 16 AC

\\\\\\\

'''''
\\\\\\

WD: Watch Dog Timer
AC: Analog Comparator

ISP: In System Programa

ble

P

Three criteria in Choosing a
Microcontroller

» meeting the computing needs of the task
efficiently and cost effectively

- speed, the amount of ROM and RAM, the number of I/0
ports and timers, size, packaging, power consumption

> easy to upgrade
> COost per unit
» availability of software development tools

- assemblers, debuggers, C compilers, emulator,
simulator, technical support

» wide availability and reliable sources of the
microcontrollers

8051
Foot Print

P1.0
P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

P1.7

RST
(RXD)P3.0
(TXD)P3.1
(INTO)P3.2
(INT1)P3.3
(TO)P3.4
(T1)P3.5
(WR)P3.6
(RD)P3.7
XTAL2
XTAL1
GND

© 00O NO O b WODN -

10

12
13
14
15
16
17
18
19
20

8051

(8031)
(8751)
(8951)

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

\Vcc
P0.0(ADO)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
EA/VPP
ALE/PROG
PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

IMPORTANT PINS (IO Ports)

» One of the most useful features of the 8051 is that it
contains four I/O ports (PO - P3)

v

Port 0 (pins 32-39) : PO (P0.0~P0.7)
> 8-bit R/W - General Purpose I/0

> Or acts as a multiplexed low byte address and data bus for external
memory design

v

Port 1 (pins 1-8) :P1 (P1.0~P1.7)
> Only 8-bit R/W - General Purpose I/O

v

Port 2 (pins 21-28) : P2 (P2.0~P2.7)
> 8-bit R/W - General Purpose I/0
> Or high byte of the address bus for external memory design

v

Port 3 (pins 10-17) :P3 (P3.0~P3.7)
> General Purpose 1/0

o if not using any of the internal peripherals (timers) or external
interrupts.

Each port can be used as input or output (bi-direction)

4

Pins of 8051

» PSEN (out): Program Store Enable, the read signal
for external program memory (active low).

» ALE (out): Address Latch Enable, to latch address
outputs at PortO and Port2

» EA (in): External Access Enable, active low to access
external program memory locations 0 to 4K

» RXD,TXD: UART pins for serial 1/0 on Port 3

P XTAL1 & XTAL2: Crystal inputs for internal
oscillator.

» Vec (pin40) :

- Vcc provides supply voltage to the chip.
- The voltage source is +5V.

in 20) : ground

Pins of 8051

» RST (pin 9: Reset
> input pin and active high (normally low) .
- The high pulse must be high at least 2
machine cycles.
- Power-on reset
- Upon applying a high pulse to RST, the
microcontroller will reset and all values
in registers will be lost.

- Reset values of some 8051 registers

Port 3 Alternate Functions

Port Pin Alternate Function

P3.0 | RXD (seral input port)
P3.1 | TXD (serial output port)
P3.2 | INTO (external interrupt)

P3.3 | INT1 (external interrupt 1)
P3.4 | TO (Timer 0 external input)

P3.5 l{Timer 1 external input)
P3.6 | WR (external data memory write strobe)

. P3.7 | RD (external data memory read strobe)
\\

Diagram

8051 Internal Block

=

—
I
| DRMWVERS
o | TF S
—
e R NN N o —— r =y | c e
= | AEGETER 1 R LATCH b ——
Ll i 1 !
I
I _.-"-HII
I
I REGISTER AL PO TER
| 1L
pd R LA R
I] AODRE S S
I 3 b= I HEGISTER
I
I
_ _ LT}
I Sl {:ﬁ} BUFFER —-]
I {-!7 s
TIRIE RS o
I e MERTER
I s Ha H e
I RGN [
=== 0 R =
2o
B TIRAR S o= NP ODPTRS |1 ¢
v — o TR T MULTELE [
= —l—- |
I PO POIRT 1 POET S
| L ATCH LATICH
I
| CHEa | L LATOHR il
I =T 1 _—l':_:. PO 3
| DRIVERS CRIVERS
[RTAL HKTALZ

S ICNSS

Specific Features OF 8051

8 bit CPU with registers A and B

16 bit PC and DPTR(data pointer).

8 bit program status word(PSW)

8 bit Stack Pointer

32 1/0 pins arranged as 4 8 bit ports:PO to P3

Two 16 bit timer/counters:TO and T1

Full duplex serial data receiver/transmitter

Control registers : TCON,TMOD,SCON,PCON,IP and IE
Two external and Three internal interrupt sources.
Oscillator and Clock Circuits.

4K Internal ROM

128bytes Internal RAM

- >4 register banks each having 8 registers

216 bytes, which may be addressed at the bit level.
- 80 bytes of general purpose data memory

VvV VvV VvV VvV VvV VvV VvV V9V VvV VvV Vv v

Wednesday, November 1,
2023

On-Chip Memory
Internal RAM

OxFF Upper 128 RAM Special Function
{Indirect Addressing Register's

0x&0 Only) (Direct Addressing Only)

Ox7F

(Direct and Indirect

Addressing) Lower 128 RAM

Ox30 > (Direct and Indirect
Ox2F Addressing)

Ox20

Ox1F

Ox00 y,

al Function
gister's
(Direct Addr

{Direct and Indirect
Addressing) M

and Indirect
ing)

General Purpose
Registers

Register Banks

- Four banks of 8 byte-sized registers, RO to R7

Addresses are :

18 - 1F for bank 3
10-17 for bank 2
08 - OF for bank 1
00 - 07 for bank O (default)

. Active bank selected by bits [RS1,RS0] in PSW.

Permits fast “context switching” in interrupt service
routines (ISR).

\\\\\\\

Y
\\\\\\

Registers

A
B

RO
R1

DPTR DPH DPL

R2 PC PC

R3
R4 Some 8051 16-bit Register
RS
R6

R7

Some 8-bit
Registers of the
8051

The Accumulator

» It 1s used as a general register to accumulate the
results of a large number of instructions.

» It can hold an 8-bit (1-byte) value and Is the most
versatile register the 8051 has due to the shear
number of Instructions that make use of the
accumulator.

» More than half of the 8051°s 255 instructions
manipulate or use the accumulator in some way.

The "R" registers

>

The "R" registers are a set of eight registers that are named
RO, R1, etc. up to and including R7.

These registers are used as auxiliary registers in many
operations

The "R" registers are also used to temporarily store values.

For example, let’s say you want to add the values in R1

and R2 together and then subtract the values of R3 and R4.
One way to do this would be:

MOV A,R3 ;Move the value of R3 into the accumulator

ADD A R4 ;Add the value of R4

MOV R5,A ;Store the resulting value temporarily in R5

MOV A,R1 ;Move the value of R1 into the accumulator

ADD A,R2 ;Add the value of R2

SU)BB A,R5 ;Subtract the value of R5 (which now contains R3 +
R4

The "B" Register

» The "B" register is very similar to the Accumulator in
the sense that it may hold an 8-bit (1-byte) value.

» The "B" register is only used by two 8051
Instructions: MUL AB and DIV AB. Thus, If you
want to quickly and easily multiply or divide A by
another number, you may store the other number In
"B" and make use of these two Instructions.

The Data Pointer (DPTR)

» The Data Pointer (DPTR) 1s the 8051°’s only user-
accessable 16-bit (2-byte) register. The
Accumulator, "R" registers, and "B" register are
all 1-byte values.

» DPTR, as the name suggests, Is used to point to
data. It is used by a number of commands which
allow the 8051 to access external memory.

» DPTR Is most often used to point to data In
external memory.

The Program Counter (PC)

» The Program Counter (PC) is a 2-byte
address which tells the 8051 where the
next instruction to execute is found in
memory.

» When the 8051 is initialized PC always
starts at 0000h and is incremented each
time an instruction is executed.

» It is important to note that PC isn’t always
incremented by one. Since some
instructions require 2 or 3 bytes the PC will
be incremented by 2 or 3 in these cases.

The Stack Pointer (SP)

» The Stack Pointer, like all registers except DPTR and
PC, may hold an 8-bit (1-byte) value. The Stack
Pointer Is used to indicate where the next value to be
removed from the stack should be taken from.

» When a value Is push onto the stack, the 8051 first
Increments the value of SP and then stores the value
at the resulting memory location.

RESET Value of Some 8051 Registers:

Register Reset Value
PC 0000
ACC 0000
B 0000
PSW 0000
SP 0007
DPTR 0000

RAM are all zero

I/0 Ports
» Port 0 (pins 32-39)

» When connecting an 8051 to an external memory, the 8051 uses
ports to send addresses and read instructions.

- 16-bit address : PO provides both address A0O-A7, P2 provides
address A8-A15.

- Also, PO provides data lines DO-D7.

» When PO is used for address/data multiplexing, it is connected to
the 74LS373 to latch the address.

» Port 1 (pins 1-8)
» Port 1 is denoted by P1.
- P1.0 ~P1.7

> P1 as an output port (i.e., write CPU data to the external pin)
> P1 as an input port (i.e., read pin data into CPU bus)

Wednesday, November 1,
2023

Port 3 (pins 10-17)

» Although port 3 is configured as an output port upon reset,
this is not the way it is most commonly used.

» Port 3 has the additional function of providing signals.
o Serial communications signal : RxD, TxD
o External interrupt : /INTO, /INT1
o Timer/counter : TO, T1

- External memory accesses : /WR, /RD

Wednesday, November 1,
2023

8051 Port 3 Bit Latches and I/0O Buffers

Fort 3 Bit

Alternate Vi
Fead Cutput

Latch J/‘ Function

Internal

Full-up
™~
}:3 | P32
Int. Bus —a—— D il
P3.x
Write Latch
to CL Q
Latch
] -]
ST
Read
Fin Alternate
Input
Function

O —

Writing "1” to Output Pin P1.X

Read latch

1. write a 1 to the

Vco_—
Load(L1) 2. output
pin is Vcc
.L - P1.X
pin
output 1

IR&Pnal .

CPU bus

Write to <
latch

‘ TB1

I Read pin

Writing "0” to Output Pin P1.X

Read latch Vee
Load(L1) 2. QUt_pUt
1. write a O to the pin is
IrfRéfnal ; . grPHRd
CPU bus pin
output O
Write to < [M1 P
latch v
\V4

I Read pin

Reading "High” at Input Pin

Read latch ‘ Vee 2. MOV A,P1
. . TB2 external
1. write a1 to the pin MOV /‘ Load(L1) pin=High
P1,#0FFH |
1 .
P1.X pin
Internal CPU py . R P
bus
. % av)
Write to latch
AN
) TB1
Read pin F

3. Read pin=1 Read
=0 Write to

Reading "Low"” at Input Pin

Read latch

1. write a1 to the pin
MOV P1,#0FFH

‘ TB2
<

Internal CPU

Write to latch

Read pin

bus (..m_
”
N

Vce _

2. MOV A,P1

Load(L1) external pin=Low

0 P1.X pin

%M]

AN

N

3. Read pin=1 Read
latch=0 Write to

TB1

8051 IC

Port O with Pull-Up Resistors

Vcc

DS5000
8751
8951

PO.1

PO.2
PO.3

PO.4

PO.5

PO.6
PO.7

© Mod

8051 Memory Organization

» The 8051 microcontroller's memory is
divided into Program Memory and Data
Memory.

» Program Memory (ROM) is used for
permanent saving program being executed,

» Data Memory (RAM) is used for temporarily
storing and keeping intermediate results and
variables.

Program Memory (ROM)/Code

Memory

Program Memory (ROM) is used for permanent
saving program (CODE) being executed. The
memory is read only.

» Depending on the settings made in compiler,
orogram memory may also used to store

a constant variables. The 8051 executes
orograms stored in program memory only.

» Code memory type specifier is used to refer to
orogram memory.

8051 memory organization allows external
program memory to be added.

How does the microcontro_ller handle external
memory depends on the pin EA logical state.

v

v

v

Program Memory

EA pin=1 »

Address FFFF hex

Address FFFF hex

Address 4000 hex

% Address 3FFF hex

Microcontroller

Interna

| Data Memory

» Up to 256 bytes of internal data memory is
available

» Locations available to the user occupy

address
register

ing space from O to 7Fh, i.e. first 128
s and this part of RAM is divided in

several blocks.

» The first 128 bytes of internal data memory
are both directly and indirectly addressable.

oer 128 bytes of data memory (from
OxFF) can be addressed only

y.

» The up
Ox80 to
indirect

Memory Organization

» RAM memory space allocation in the 8051

7FH

30H

2FH

20H

1FH
18H

17
10H

OFH
08H

O7H—

Scratch pad RAM

Bit—-Addressable RAM

Register Bank 3

Register Bank 2

(Stack) Register Bank 1

Register Bank 0

Wednesday, November 1,
2023

Bit Addressable Memory

» Memory block in the range of 20h to 2Fh is
bit—-addressable, which means that each bit
being there has its own address from 0 to
/Fh.

» Since there are 16 such registers, this block
contains in total of 128 bits with separate
addresses (Bit O of byte 20h has the bit
address 0, and bit 7 of byte 2Fh has the bit
address 7Fh).

External Data Memory

» Access to external memory is slower than access
to internal data memory.

» There may be up to 64K Bytes of external data
memory.

» Several 8051 devices provide on-chip XRAM
space that is accessed with the same instructions
as the traditional external data space.

» This XRAM space is typically enabled via proper
setting of SFR register and overlaps the external
memory space.

» Setting of that register must be manually done in
code, before any access to external memory or
XRAM space is made.

Figure 2-8

Accessing
external
code
memory

D07
EPROM

Figure
2-11

Interface
to 1K
RAM

T4HC373

- M No CopwveCTIoN
or %o EPRoM

DO-D7

RAM
(1K byte)

AD-A7

DATA MEMORY
{READ/ WRITE)

[B NN RN NN N X X N N N T N E JF ¥ F % % F F 3 Wy

(READ ONLY)

S R R A D A A P A W W

PROGRAM MEMORY

INTERNAL

8

FFH:

LB N T W I N N N B N F W N B N W N N ¥ F BN W %% % %% .'..'.l.‘."---._‘

T

EA=1
INTERNAL

- o e el o N A A W

FFFFH:

EA=0
EXTERNAL

SRR sl Ess e EERESr EEeesaa

Figure 2. MCS®-51 Memory Structure

Special Function Registers

» SFRs which are also bit addressable
A, B, IP, IE, TCON, SCON, PSW, PO, P1, P2,
P3
» Other SFRs

TMOD, THO, TLO, THT, TL1, SBUF, PCON,
SP, DPTR

-

Etc.

OxFF

Special Function

sing R

0x80 Only) {Direct A
Ox7F

(Direct and Indirect

Addressing) Lowed

(Direct &

oxzk I &l 55
e Bit Addressable Addressil
Dx20

Ox1F General Purpose

0x00 Reqgisters

Special Function Registers

“W

Accumulator SBUF Serial Port data
buffer
B Arithmetic SP Stack Pointer
DPH Addressing Ext TMOD Timer/Counter
Memory mode cntrl
DPL Addressing Ext TCON Timer/Counter
Memory cntrl
IE Interrupt enable TLO TimerO lower byte
P Interrupt Priority THO TimerO0 higher
byte
PO /0O Port Latch TLT Timer1 lower byte
Pl |/O Port Latch TH1 Timer1 higher
byte
P2 /O Port Latch

P3 /O Port Latch

PCON Power Control
PSW Pam Statiic

SFR MEMORY MAP

F&
FO
ES
EO
D8
Do
C8
Co

888833388

8 Bytes

ACC

PSW

T2CON

RCAP2L

RCAP2H

TL2

TH2

IP

P3

IE

P2

SCON

SBUF

P1

TMOD

TLO

TL1

THO

TH1

SP

DPL

DPH

PCON

T

Bit

Addressable
\!

Figure 5

FF

EF
E7
DF
D7
CF
c7
BF
B7
AF
A7
oF
97
8F
87

PSW: PROGRAM STATUS WORD. BIT ADDRESSABLE.

CY AC - FO RS1 RSO oV —_ P

CY PSW.7 Carry Flag.
AC PSW.6 Auxiliary Carry Flag.

FO PSW.5 Flag 0 available to the user for general purpose.

RS1 PSW.4 Register Bank selector bit 1 (SEE NOTE 1).

RSO PSW.3 Register Bank selector bit 0 (SEE NOTE 1).

ov PSW.2 Overflow Flag.

— PSW.1 User definable flag.

P PSW.0 Parity flag. Set/cleared by hardware each instruction cycle to indicate an odd/even number of

‘1’ bits in the accumulator.

NOTE:
1. The value presented by RS0 and RS1 selects the corresponding register bank,
RS1 RSO Register Bank Address
0 00H-07H
1 08H-OFH
2 10H-17H
3 18H-1FH

TMOD Register.

CFfT | M1 MO

GATE
GATE

S| M1 | MO

TIMERK 1 TIMER O

Gate : when set, timer only runs while INT(0,1)
is high.

C/T : counter/Timer select bit.

M1 | M0 |MODE
M1 : Mode bit 1. 0 | 0 |13-bittimer mode
0 | 1 |16-bittimer mode
1| 0 | 8hit auto-reload mode
1 | 1 | splitmode

TCON Register

TF1 | TR1 | TFO TRO

T 1

Irri

THEO

I'ro

TF1: Timer 1 overflow flag.

TR1: Timer 1 run control bit.

TFO: Timer O overflag.

TRO: Timer O run control bit.

|IE1: External interrupt 1 edge flag.
IT1: External interrupt 1 type flag.
|IEO: External interrupt O edge flag.
ITO: External interrupt O type flag.

CHAPTER 7

Instruction Set and
Addressing Modes of 8051

Addressing Modes

The way in which the instruction is specified.

<|mmediate
<Register
<Direct
<Register Indirect
< |ndexed

Immediate Addressing Mode

<« Immediate Data iIs specified in the instruction itself

<+EQs:

MOV A #65H

MOV A# A

MOV R6,#65H
MOV DPTR,#2343H
MOV P1,#65H

Register Addressing Mode

MOV Rn, A 'n=0,..,7
ADD A, Rn
MOV DPL, R6

V DPTR, A
MOV R

Direct Addressing Mode

Although the entire of 128 bytes of RAM can be
accessed using direct addressing mode, it iIs most often
used to access RAM loc. 30 — 7FH.

MOV RO, 40H

MOV 56H, A

MOV A, 4 ;= MOV A, R4
MOV 6, 2 ; copy R2 to R6

- MOV R6,R2 i1s invalid !

NS
\
\ \&\M

Register Indirect Addressing Mode
< In this mode, register is used as a pointer to the data.

MOV A,@RI

; move content of RAM loc. Where address is held by RI into
A

(1I=0or1l)
MOV @R1,B

In other word, the content of register RO or R1 is sources or
target in MOV, ADD and SUBB insructions.

X> jump

Indexed Addressing Mode And On-Chip ROM
Access

< This mode is widely used in accessing data elements
of look-up table entries located in the program (code)
space ROM at the 8051

MOVC A @A+DPTR
A= content of address A +DPTR from ROM
Note:

Because the data elements are stored in the program
(code) space ROM of the 8051, it uses the instruction
MOVC instead of MOV. The “C” means code.

The 8051
Assembly Language

Overview

< Data transfer instructions

<+ Addressing modes

<4 Data processing (arithmetic and logic)
<Program flow instructions

Data Transfer Instructions

<€+MOQV dest, source dest 0 source
<Stack instructions
PUSH byte ;increment stack poilnter,

;ymove byte on stack

POP byte ;ymove from stack to byte,
;decrement stack pointer

<Exchange instructions

XCH a, byte ;exchange accumulator and byte

XCHD a, byte ;exchange low nibbles of
;yaccumulator and byte

Addressing Modes

Immediate Mode - specify data by its value

mov A, #0 ;put 0 in the accumulator
;A = 00000000
mov R4, #1l1lh ;put 1llhex in the R4 register

;R4 = 00010001

mov B, #11 ;put 11 decimal in b register
;B = 00001011

mov DPTR,#7521h ;put 7521 hex in DPTR
;DPTR = 0111010100100001

Addressing Modes

Immediate Mode - continue

MOV DPTR, #7521h
MOV DPL, #21H
MOV DPH, #75

COUNT EGU 30

~

mov R4, #COUNT

MOV DPTR, #MYDATA

ORG 200H
MYDATA :DB “"IRAN"

Addressing Modes

Register Addressing - either source or
destination is one of CPU register

MOV RO,A

MOV A,R7

ADD A,R4

ADD A,R7

MOV DPTR, #25F5H
MOV R5,DPL

MOV R,DPH

Note that MOV R4,R7 1s incorrect

Addressing Modes

Direct Mode - specify data by its 8-bit address
Usually for 30h-7Fh of RAM

Mov a, 70h ; copy contents of RAM at 70h to a
Mov RO, 40h ; copy contents of RAM at 70h to a
Mov 56h,a ; put contents of a at 56h to a
Mov ODOh,a ; put contents of a into PSW

DATA MEMORY (RAM)
INTERNAL DATA ADDRESS SPACE

0xFF

Upper 128 KAM Special Function
(Indirect Addressing Reqgister's
0x20 only) (Direct Addressing Only)
Ox7F ™
iDirect and Indirect
Addressing) Lower 128 RAM
0x30 > {Direct and Indirect

Addressing)

Addressing Modes

Direct Mode - play with RO-R7 by direct address

MOV A,4 = MOV A,R4
MOV A,7 = MOV A,R7
MOV 7,2 = MW
MOV R2,#5 ;Put 5 in R2

MOV R2,5 ;Put content of RAM at 5 in R2

Addressing Modes

Register Indirect - the address of the source or
destination is specified in registers

Uses registers RO or R1 for 8-bit address:

mov psw, #0 ; use register bank 0
mov r0, #0x3C
mov Qr0O, #3 ; memory at 3C gets #3
; M[3C] [3
Uses DPTR register for 16-bit addresses:
mov dptr, #0x9000 ; dptr [9000h
movx a, (@dptr ; a [l M[9000]

Note that 9000 is an address in external memory

Addressing Modes

Register Indexed Mode - source or destination
address is the sum of the base address and
the accumulator(Index)

<4Base address can be DPTR or PC

mov dptr, #4000h
mov a, #5
movc a, @a + dptr ;a [M[4005]

-

Acc Register

<« A register can be accessed by direct and register
mode

<« This 3 instruction has same function with different
code

0703 E500 mov a,00h
0705 8500EO0 mov acc,00h
0708 8500EO0 mov 0OeOh,O00h

<« Also this 3 instruction
070B E9 mov a,rl
070C 89EO mov acc,rl
070E 89EO mov OeOh,rl

SFRs Address

< B - always direct mode - except in MUL & DIV

0703 8500F0 mov b,00h
0706 8500F0 mov 0f£0h,00h
0709 8CFO mov b,r4
070B 8CFO mov 0£fO0h,r4

<« PO~P3 - are direct address

0704 F580 mov p0,a
0706 F580 mov 80h,a
0708 859080 mov p0,pl

<« Also other SFRs (pcon, tmod, psw,....)

8051 Instruction Format

<4immediate addressing

Op code Immediate data
add a,#3dh ‘machine code=243d

<4 Direct addressing

mov [3Poeefe i Rirect address

Stack

< Stack-oriented data transfer

— Only one operand (direct addressing)
— SP is other operand - register indirect - implied

<« Direct addressing mode must be used in Push and
Pop

mov sp, #0x40 ; Initialize SP

push 0x55 ; SP [SP+1, M[SP] [l M[55]
; M[41] [I MI[55]
pop b ; b [M[55]

Note: can only specify RAM or SFRs (direct mode) to push or pop.
Therefore, to push/pop the accumulator, must use acc, not a

Stack (push,pop)

<« Therefore

Push a ;is invalid
Push rO ;is inwvalid
Push rl ;1s invalid

push acc ;is correct
Push psw ;is correct
Push b ;1s correct
Push 13h

Push 0

Push 1

Pop 7

Pop 8

Push 0eOh ;acc

Serial Port operation

<« Serial communication means transfer data bit by
bit serially at a time, where as in parallel
communication, the number of bits that can be
transferred at a time depends upon the number
of data lines available for communication.

<+ Two methods of serial communication are

<« Synchronous Communication: Transfer of bulk
data in framed structure at a time

< Asynchronous Communication: Transfer of a byte
data in framed structure at a time

<« 8051 has built in UART with RXD (serial data
receive pin) and TXD (serial data transmit pin) on
PORT3.0 and PORT3.1 respectively.

Communication Mode

Sender/ Sender/

Receiver Serial Receiver
(Single Bus)

Sender/ Sender/

Receiver Receiver

Parallel
(Number of Buses)

electronicwings.com

Asynchronous communication

<« Asynchronous serial communication is widely used for
byte oriented transmission.

<« Frame structure in Asynchronous communication:
< START bit: It is a bit with which serial communication
start and it is always low.

<+ Data bits packet: Data bits can be 5 to 9 bits packet.

Normally we use 8 data bit packet, which is always sent
after START bit.

<« STOP bit: This is one or two bits. It is sent after data
bits packet to indicate end of frame. Stop bit is always
logic high.

<« |In asynchronous serial communication frame, first
START bit followed by data byte and at last STOP bit,
forms a 10-bit frame. Sometimes last bit is also used

as parity bit.

Data transmission rate

< Data transmission rate is measured in bits per
second (bps). In binary system it is also called
as baud rate (number of signal changes per
second).

<Standard baud rates supported are 1200,
2400, 4800, 19200, 38400, 57600, and
115200. Normally most of the time 9600 bps
is used when speed is not a big issue.

Serial communication Registers

<SBUF: Serial Buffer Register

<4 This is the serial communication data register
used to transmit or receive data through it.

<4 SCON: Serial Control Register

<4Serial control register SCON is used to set
serial communication operation modes. Also
it is used to control transmit and receive
operations.

SCON

SCON

7 6 5 4 3 2 1 0
SMO SM1 SM2 REN TES RBS Tl RI
Mode @ SMO SM1 Mode
1/12 of Osc frequency shift register mode fixed
0 0 0
baud rate
1 0 1 8-bit UART with timer 1 determined baud rate
2 1 0 9-bit UART with 1/32 of Osc fixed baud rate
3 1 1 9-bit UART with timer 1 determined baud rate

Bit 7:6 - SMO0:SM1: Serial Mode Specifier

Normally mode-1 (SMO =0, SM1=1) is used with 8 data bits, 1 start bit and
1 stop bit.

A4 A4 44444414

A4

SCON

Bit 5 — SM2: for Multiprocessor Communication

This bit enables multiprocessor communication feature in mode 2 & 3.
Bit 4 - REN: Receive Enable

1 = Receive enable

0 = Receive disable
Bit 3 — TB8: 9th Transmit Bit

This is 9th bit which is to be transmitted in mode 2 & 3 (9-bit mode)
Bit 2 — RB8: 9th Receive Bit

This is 9th received bit in mode 2 & 3 (9-bit mode), where as in mode 1, if SM2 =
0 then RB8 hold stop bit that received

Bit 1 — Tl: Transmit Interrupt Flag

This bit indicates transmission is complete and gets set after transmitting the
byte from buffer. Normally Tl (Transmit Interrupt Flag) is set by hardware at the
end of 8th bit in mode 0 and at the beginning of stop bit in other modes.

Bit O - RI: Receive Interrupt Flag

This bit indicates reception is complete and gets set after receiving the complete
byte in buffer. Normally RI (Receive Interrupt Flag) is set by hardware in receiving
moale at the end of 8th bit in mode 0 and at the stop bit receive time in other
modes.

Timer Operations

<4The 8051 has two counters/timers which can
be used either as timer to generate a time
delay or as counter to count events
happening outside the microcontroller.

<4 he 8051 has two timers: timer0 and timerl.
They can be used either as timers or as
counters. Both timers are 16 bits wide. Since
the 8051 has an 8-bit architecture, each 16-

bit is accessed as two separate registers of
low byte and high byte.

TimerO registers

<TimerO registers is a 16 bits register and
accessed as low byte and high byte. The low
byte is referred as a TLO and the high byte is
referred as THO. These registers can be
accessed like any other registers.

THI TL1

Fig. Timerl

Timerl registers

<Timer]1 registers is also a 16 bits register and
is split into two bytes, referred to as TL1 and
THI.

THO [L0

Fig. Timer0

TMOD (timer mode) Register:

<+ This is an 8-bit register which is used by both timers 0 and
1 to set the various timer modes. In this TMOD register, lower
4 bits are set aside for timer0O and the upper 4 bits are set
aside for timerl

< In upper or lower 4 bits, first bit is a GATE bit. Every timer
has a means of starting and stopping. Some timers do this by
software, some by hardware, and some have both software
and hardware controls.

<+ The hardware way of starting and stopping the timer by an
external source is achieved by making GATE=1 in the TMOD
register. And if we change to GATE=0 then we do no need
external hardware to start and <tan the timerc

ATE} /T | M1 Mo JcaTE] C/T M1 MO

Timerl Timer0O

Fig. TMOD Register

TMOD

<« The second bit is C/T bit and is used to decide
whether a timer is used as a time delay generator
or an event counter. If this bit is O then it is used
as a timer and if itis 1 then it is used as a
counter.

<« |n upper or lower 4 bits, the last bits third and
fourth are known as M1 and MO respectively.
These are used to select the timer mode.

<+« MO M1 Mode Operating Mode

<« 0 0 0 13-bit timer mode,
<« 0]] 16-bit timer mode,
<] 0 2 8-bit auto reload

<+ Spilt timer mode.

TCON register-

I TF1 ITR] ITFDI TRDI IE1 I IT1 I IEDI ITGI

TCON is 8-bit control register $nd CONtS#Etimer and interrupt flags.
Bit 7 - TF1: Timerl Overflow Flag

1 =Timerl overflow occurred (i.e. Timerl goes to its max and roll over back to
zero).

0 = Timerl overflow not occurred.
It is cleared through software. In Timer1 overflow interrupt service routine, this bit
will get cleared automatically while exiting from ISR.
Bit 6 - TR1: Timerl Run Control Bit

1 =Timerl start.

0 = Timerl stop.
It is set and cleared by software.
Bit 5 — TFO: TimerO Overflow Flag

1 = TimerO overflow occurred (i.e. Timer0 goes to its max and roll over back
to zero).
0 = TimerO overflow not occurred.
migd through software. In Timer0O overflow interrupt service routine, this bit

lear aaatically while exiting from ISR.

TCON register

<« Bit4 - TRO: TimerO Run Control Bit

<« 1 = Timer0 start.

< 0 = TimerO stop.

<+ |tis set and cleared by software.

<« Bit3 - IE1: External Interrupt] Edge Flag

« 1 = External interruptl occurred.

< 0 = External interruptl Processed.

<« ltis set and cleared by hardware.

<« Bit2 - IT1: External Interruptl Trigger Type Select Bit
« 1 = Interrupt occur on falling edge at INT1 pin.
< 0 = Interrupt occur on low level at INT1 pin.

<« Bit 1 - |IEO: External InterruptO Edge Flag

< 1 = External interruptO occurred.

< 0 = External interruptO Processed.

<« ltis set and cleared by hardware.

<« Bit 0 - ITO: External InterruptO Trigger Type Select Bit
< 1 = Interrupt occur on falling edge at INTO pin.
<+ 0 = Interrupt occur on low level at INTO pin.

Interrupts in 8051

<|nterrupts in 8051 microcontroller are more
desirable to reduce the regular status
checking of the interfaced devices or inbuilt
devices.

<|nterrupt is an event that temporarily
suspends the main program, passes the
control to a special code section, executes
the event-related function and resumes the
main program flow where it had left off.

Basic Types

<|nterrupts are of different types like software
and hardware, maskable and non-maskable,
fixed and vector interrupts, and so on.

< Interrupt Service Routine (ISR) comes into the
picture when interrupt occurs, and then tells
the processor to take appropriate action for
the interrupt, and after ISR execution, the
controller jumps into the main program.

Interrupt Sources

<+ 8051 has 5 sources of interrupts

Timer O overflow(TO)
— Timer 1 overflow(T1)
- External Interrupt O(INTO)
- External Interrupt 1(INT1)
— Serial Port events(TI/RI)

— The Timer and Serial interrupts are internall
generated by the microcontroller, whereas tKe external
interrupts are generated by additional interfacin
devices or switches that are externally connected to
the microcontroller. These external interrupts can be
edge triggered or level triggered. When an interrupt
occurs, the microcontroller executes the interrupt
service routine so that memory location corresponds to
the interrupt that enables it. The Interrupt
corresponding to the memory location is given in the
interrupt vector table below.

Interrupt Priorities

<+ What if two interrupt sources interrupt at the same time?
<+ The interrupt with the highest PRIORITY gets serviced first.
<+ All interrupts have a default priority order.

<« Priority can also be set to “high” or “low”.

Interrupt Number Interrupt Description Address
0 EXTERNAL INT O 0003k
1 TMER/COUNTER 0 0006h
i EXTERNAL INT 1 001N
) TMER/COUNTER 1 0016n
4 SERIAL PORT . 0OZ3N

Interrupt Structure

=0+ PRICAITY
NTERRUPT

‘T\ INTERRUM

POLLING
SCQUENCL

nl-—" > »-C t O."b
Ti=y |

CLOGAL ,
ENASLE ‘
LOWY ol TY

INDYWDUAL o
INTERSLIPT INTERRLPT

ENABLES

Interrupt Enable (IE) Register:

<4 This register is responsible for enabling and
disabling the interrupt. It is a bit addressable
register in which EA must be set to one for
enabling interrupts. The corresponding bit in
this register enables particular interrupt like
timer, external and serial inputs. In the below
IE register, bit corresponding to 1 activates
the interrupt and O disables the interrupt.

Interrupt Enable (IE) Register

<4 This register is responsible for enabling and
disabling the interrupt. It is a bit addressable
register in which EA must be set to one for
enabling interrupts. The corresponding bit in
this register enables particular interrupt like
timer, external and serial inputs. In the below
IE register, bit corresponding to 1 activates
the interrupt and O disables the interrupt.

Interrupt Enable Register

-EA : Global enable/disable.
: Undefined.

-ET2 :Enable Timer 2 interrupt.
-ES :Enable Serial port interrupt.
-ET1 :Enable Timer 1 interrupt.
-EX1 :Enable External 1 interrupt.
-ETO : Enable Timer O interrupt.

-EX0 : Enable External O interrupt.

Interrupt Priority Register (IP):

<« |t is also possible to change the priority levels of
the interrupts by setting or clearing the
corresponding bit in the Interrupt priority (IP)
register as shown in the figure.

<« This allows the low priority interruE_t to interrupt
the high-priority interrulpt, but prohibits the
interruption by another low-priority interrupt.

Similarly, the high-priority interrupt cannot be
interrupted.

<« |If these interrupt priorities are not programmed,
the microcontroller executes in predefined
gnanner and its order is INTO, TFO, INT1, TF1, and
.

Interrupt Priority Register

'"sao .L“o
3 Fh E 2R P L 2 =1 P
Dewnct axtreny D A [% | J’.\! &1 0 I
= p— r
Bl sodrems BF £t 0 ec B3 BA &3 B8

Cloar for giving ow Doty for eateregy piemugt 1 (M)

Set or gvieg hgh prorty for exterea mierrapt 1 (N1

Chaar fat ghving ow piiotly for exdarss Biarrapt © (NTO)

S fir gwing hagh pravly (oe extemasd rdarmupt 3 (N0}

Instruction Set

DATA PROGRAM
TRANSFER ARITHMETIC LOGICAL BOOLEAN BRANCHING
MOV ADD ANL CLR LIMP
MOVC ADDC ORL SETB AIMP
MOVX SUBB XRL MOV SIMP
PUSH INC CLR JC JZ
POP DEC CPL JNC INZ
XCH MUL RL B CINE
XCHD DIV RLC JNB DINZ
DA A RR IBC NOP
RRC ANL LCALL-
SWAP ORL ACALL
CPL RET
RETI

8051 MICROCONTROLLER
INSTRUCTION SET

MOV Instruction

<+ Operation:MOV
< Function:Move memory
<+ Syntax:MOV operandl,operand?

<+ Description: MOV copies the value
of operand? into operandi. The value
of operand? is not affected.

< E%tl\r/]l operand] and operand? must be in Internal

<+ No flags are affected unless the instruction is
moving the value of a bit into the carry bit in
which Ccase the carry bit is affected or unless the
instruction is moving a value into the PSW register
(which contains all the program flags).

MOV

< No flags are affected unless the instruction is
moving the value of a bit into the carry bit in
which case the carry bit is affected or unless

L
f

ne instruction is moving a value into the PSW

register (which contains all the program

ags).

<« MQV @RO,#data
<+ MOV @RO,A

<« MOV A, #data

<« MOV A,@R]1

<+ MOV A,RO

Exchange Instructions

two way data transfer

XCH a, 30h ; a lJll M[30]
XCH a, RO ; allll RO

XCH a, @RO ; a lJlJ MI[RO]
XCHD a, RO ; exchange "digit”

al7..4] all3..o7 RO[7..4] RrO|[3..0] “

| Only 4 bits exchanged |

Bit-Oriented Data Transfer

< transfers between individual bits.

<+ Carry flag (C) (bit 7 in the PSW) is used as a single-
bit accumulator

<+ RAM bits in addresses 20-2F are bit addressable

RAM
mov C, PO.O
Byte Byte
address Bit address _ address Bit address
27 [3F[3E[3D[3C|3B[3A 39|38 . 7F
mov C, 67h 26 [37]36]35]34 33323130 g
25 [2F[2e[2D|2c|2B[2A]29 |28 2
mov C, 2ch.7 24 [27]26]25]24]23[22[21]20 © General
23 [iF[iE[iD[1c[iB[1A[19]18] [2 P
22 [17]16]15]14]13] 12|11 {10 =
21 |orjoEjopjocioBloafoo|os =z
20 [07]06os[oafo3[o2[o1fo0] | = 30
IF . [2F [7F]7E[1D[7C[7B]7A79]78
8 Bk £ | 26 [77|76|75]7a[73[72[71[70
17 Bank 2 2 | 2 [6F|6E[6D]6C|6B[6A[69 68
10 2 | 2c |@)e6[6s]64]63]62]61 60
OF Bl 21 28 [SF[SE[sD[sC[5B|5A[59]58
5 | 24 [57]s6]55]54[53]52[51]50
Default register i 29 |4F|4E4D|4C[4B[4A49 |48
bank for RO-R7 M| 28 |47]46|45(44]43[42]41 |40

SFRs that are Bit Addressable

SFRs with addresses
ending in O or 8
are bit-
addressable.

(80, 88, 90, 98, etc)

Notice that all 4
parallel 1/0O ports
are bit addressable

Byte
address

98

90

8D
8C
8B
8A
89
88
7

o

83
82
8
80

Bit address

9F

9E

9D

9C

9B

9A

9%

98

97

96

95

94

93

92

91

90

not bit addressable

not bit addressable

not bit addressable

not bit addressable

not bit addressable

8F

8E

8D

8C

8B

8A

89

88

not bit addressable

not bit addressable

not bit addressable

not bit addressable

86

83

84

83

82

81

80

SCON

Pl

THI
THO
TLI
TLO
TMOD
TCON
PCON

DPH
DPL
SP

Byte
address

B8

B0

A8

Al

99

Bit address

F6

F5

F4

F3

Fl

E7

E6

ES

E4

E3

El

EO

D7

D6

D5

D4

D3

BC

BB

BY

B8

B7

B6

B3

B4

B3

Bl

B0

AF

AC

AB

A9

A8

Al

Ab

A5

Ad

Al

Al

Al)

not bit addressable

ACC

PSW

IP

P3

IE

SBUF

Subroutines

<« Subroutines allow us to have "structured” assembly language
programs.

<+ This is useful for breaking a large design into manageable
parts.

<« |t saves code space when subroutines can be called many
times in the same program.

Main: ...
acall sublabel

/

sublabel: ... :g the subroutine

Subroutine - Example

square: push b
mov b,a

mul ab
pop b
ret

<+ 8 byte and 11 machine cycle

<« SP is initialized to 07 after reset.(Same address as R7)

<+ With each push operation 15t pc is increased

<+ When using subroutines, the stack will be used to store the PC, so it is
veryalmportant to initialize the stack pointer. Location 2Fh is often
used.

mov SP, #2Fh

Example of delay

mov a,#0aah Delay?2:
Backl:mov pO0,a mov r6,#0£ffh

lcall delayl backl: mov r7,#0£ffh ;1cycle

cpl a Here: djnz r7,here ;2cycle

sjmp backl djnz r6,backl;?2cycle
Delayl:mov rO,#0£ffh;lcycle ret ;2cycle
Here: djnz r0,here ;2cycle end

ret ;2cycle

end Delay=1+ (1+255*2+2) *255+2

=130818 machine cycle

Delay=1+255*2+2=513 cycle

Arithmetic Instructions

Mnemonic

Description

ADD A, byte

add A to byte, put result in A

ADDC A, byte

add with carry

SUBB A, byte

subtract with borrow

INC A increment A

INC byte increment byte in memory

INC DPTR increment data pointer

DEC A decrement accumulator

DEC byte decrement byte

MUL AB multiply accumulator by b register
DIV AB divide accumulator by b register

decimal adjust the accumulator

ADD Instructions

add a, byte ; a ll a + byte

addc a, byte ; all a + byte + C
These instructions affect 3 bits in PSW:

C = 1 if result of add is greater than FF

AC = 1 if there is a carry out of bit 3

OV = 1 if there is a carry out of bit 7, but not from bit 6, or
visa versa.

Program Status Word {(PSW)

) 4 3 2 1 0
FO RS1 RS0 oV F1 P
zer Fedgizter | Redgister § Overflo =er Parity
Flag 0 Bank Bank W flag Flag 1 Bit

Zelect1 | Zelect0

B

Instructions that Affect PSW bits

Instructions that Affect Flag Settings(1)

Instruction Flag Instruction Flag
Cc oV AC C oV AC

ADD XX X CLRC 0
ADDC X X X CPLC X
SUBB XX X ANL C bit X

MUL 0 X ANL C /bit X

DIV 0 X ORL C,bit X

DA X ORL C /bit X

RRC b MOV C bit X

RLC X CJNE X
SETB C 1

111

0011
B 0010

o0 00

] /F
0000

111

omplement:

0

127
80

- A+ IiAarn AInr,

r128

' 1
]

Overflow

0111 117171 .
0111 0011

1111 0010 (overt
cannot represent 24
bits 2’'s complement

(posi

1000 1111 (negehsss

1101 0011 (negati:

0110 0010 (overtf
0011 1111 (pOSl
1101 0011 S

0001 0010 (@&

Addition Example

- ComputesZ=X+Y
- Adds values at locations 78h and 79h and puts them in 7Ah

X equ 78h
Y equ 79h
Z equ 7Ah

org 00h
ljmp Main

org 100h

mov a, X
add a, Y
mov Z, a
end

The 16-bit ADD example

. ComputesZ=X+Y (X,Y,Z are 16 bit)

org 00h

org 100h

mov a, X
add a, Y
mov Z, a
mov a, X+ 1
adc a, Y+1
mov Z+1, a
end

Subtract

SUBB A, byte subtract with borrow
Example:

SUBB A, #0x4F ;AL A - 4F - C
Notice that

There is no subtraction WITHOUT borrow.
Therefore, if a subtraction without borrow is desired,
it is necessary to clear the C flag.

Example:

Clr ¢
B A, #0x4F ;A] A - 4F

Increment and Decrement

INC A increment A

INC byte increment byte in memory
INC DPTR increment data pointer
DEC A decrement accumulator
DEC byte decrement byte

<« The increment and decrement instructions do NOT affect
the C flag.

<+ Notice we can only INCREMENT the data pointer, not
decrement.

Example: Increment 16-bit Word

<€+ Assume 16-bit word in R3:R2

mov a, r2
add a, #1 - use add rather than increment to affect C

mov r2, a
mov a, r3
addc a, #0 ; add C to most significant byte

mov r3, a

.

Multiply

When multiplying two 8-bit numbers, the size of the
maximum product is 16-bits

FF x FF = FEO1
(255 x 255 = 65025)

MUL AB ; BA o A *

B

Note : B gets the High byte
A gets the Low byte

Division

<|nteger Division
DIV AB ; divide A by B

A [Quotient (A/B)
B [] Remainder (A/B)

OV - used to indicate a divide by zero condition.
C - set to zero

Decimal Adjust

DA a ; decimal adjust a

Used to facilitate BCD addition.

Adds “6” to either high or low nibble after an addition
to create a valid BCD number.

Example:
mov a, #23h
mov b, #29h
add a, b ; all 23h + 29h = 4Ch (wanted 52)
DA a ; all a+ 6 = 52

Logic Instructions

- Bitwise logic operations
< (AND, OR, XOR, NOT)

d Clear

-1 Rotate

J Swap

Logic instructions do NOT affect the flags in PSW

Bitwise Logic

Examples:

ANL [/ AND 0000111

ORL [OR ANL 1

0000110
XRL [] XOR 0

CPL [/ Complement 0000111

ORL 1

101011Q
@

0000111

1
1016993
)
CPL 1010110
0101001
1

XRL

Address Modes with Logic

ANL — AND a, byte
ORL-OR di%ect, reg. indirect, regqg,
XRL — eXclusive oR immediate

b%;e, a

direct

byte, #constant
CPL — Complement

a ex: cpl a

Uses of Logic Instructions

<« Force individual bits low, without affecting other
bits.

anl PSW, #O0xE7 ; PSW AND 11100111

<+ Force individual bits high.
orl PSW, #0x18 ;PSW OR 00011000

<« Complement individual bits
xrl P1, #0x40 ;P1 XRL 01000000

Other Logic Instructions

CLR - clear

RL — rotate left

RLC - rotate left through Carry
RR — rotate right

RRC - rotate right through Carry

SWAP - swap accumulator nibbles

CLR (Set all bits to 0)

CLR A

CLR byte (direct mode)

CLR Ri (register mode)

CLR @R (register indirect mode)

.

Rotate

<Rotate instructions operate only on a

RL a .

Mov a, #0xF0 ; al 11110000
RR a ; abb 11100001
RR a ’
Mov a, #0xFO0 1 ac 0000

1111
RR a ; ao 01111000

Rotate through Carry

> C

RRC a R
mov a, #0AS9h ; a [l A9
add a, #1l4h ; all BD (10111101), cC[I O
rrc a ; a U 01011110, cU 1
RILC a

« C
mov a, #3ch ;- a T —3cITt OLLil rvp)
setb c ; c) 1
rlc a ; all] 01111001, cCcl 1

Rotate and Multiplication/Division

<4 Note that a shift left is the same as
multiplying by 2, shift right is divide by 2

mov a, #3 ; ALl 00000011 (3)

clr C ; CLI 0

rlc a ; ALl 00000110 (o)

rlc a ; ALl 00001100 (12)
rrc a ; ALl 00000110 (o)

Swap

SWAP a
mov a, #72h ; a ll 27h
swap a ; a Ll 27h

.

Bit Logic Operations

<+ Some logic operations can be used with single bit
operands

ANL C, bit
ORL C, bit
CLR C

CLR bit
CPL C

CPL bit
SETB C
SETB bit

<+ “bit” can be any of the bit-addressable RAM

I locations or SFRs.

Shift/Mutliply Example

<4Program segment to multiply by 2 and add 1.

.

Program Flow Control

< Unconditional jumps (“go to”)

< Conditional jumps

< Call and return

Unconditional Jumps

<4SJMP <rel addr> ; Short jump,
relative address 1s 8-bit 2’s complement number,
so jJump can be up to 127 locations forward, or 128

locations back.

<4LJMP <address 16> ; Long jump

<€4AJMP <address 11> ; 2absolute jump to

anywhere within 2K block of program memory

<4 JMP QA + DPTR ; Long indexed
jump

Infinite Loops

Start: mov C, p3.7
mov pl.6, C
sjmp Start

Microcontroller application programs are almost always infinite loops!

-locatable

specific NOT Re-locatable

lj mp

ocatable

ump table

Conditional Jump

<+ These instructions cause a jump to occur only if a
condition is true. Otherwise, program execution
continues with the next instruction.

loop: mov a, Pl

jz 1loop ; if a=0, goto loop,
; else goto next instruction

mov b, a

<+ There is no zero flag (z)
<« Content of A checked for zero on time

Conditional jumps

Mnemonic Description

JZ <rel addr> Jump 1f a = 0

JNZ <rel addr> Jump 1f a != 0

JC <rel addr> Jump 1f C =1

JNC <rel addr> Jump if C != 1

JB <bit>, <rel addr> Jump 1if bit =1

JNB <bit>,<rel addr> Jump 1f bit != 1

JBC <bir>, <rel addr> Jump 1f bit =1, &clear

bit

CJIJNE A, direct, <rel addr>

Compare A and memory,

Jump

1f not equal

Example: Conditional Jumps

if (a = 0) is true
send a 0 to LED

else
send a 1 to LED

jz led off

Setb P1.6

sjmp skipover
led off: clr P1.6

mov A, PO
skipover:

More Conditional Jumps

Mnemonic

Description

CJINE

A, #data <rel addr>

Compare A and data, jump
1f not equal

CINE Rn, #data <rel addr> |Compare Rn and data,
Jump 1f not equal

CIJNE @Rn, #data <rel addr> |Compare Rn and memory,
Jump 1f not equal

DJNZ

Rn, <rel addr>

Decrement Rn and then

Jump 1f

not zero

DJNZ

direct, <rel addr>

Decrement memory and
then jump 1f not zero

Iterative Loops

ForA=0to 4 do ForA=41to0do
(.. (...}
clr a mov RO, #4
loop: ... loop: ...
éﬁﬁz RO, loop
inc a
cjne a, #4, loop

e

next:

Iterative Loops(examples)

mov a,#50h

mov b, #00h

cjne a,#50h,next
mov b, #01lh

nop

end

mov a,#0aah
mov b,#10h
Backl:mov r6,#50
Back2:cpl a

djnz r6,back2
djnz b,backl
end

Again:

mov a,#25h
mov r0O,#10h
mov r2,#5
mov (@ro,a
inc r0

djnz r2,again
end

Back:

mov a, #0h
mov r4d,#12h
add a, #05
djnz r4,back
mov r5,a
end

Call and Return

< (Call is similar to a jump, but
— Call pushes PC on stack before branching

acall <address 11> ; stack [J PC
; PC [J address 11 bit

lcall <address 16> ; stack [l PC
; PC [l address 16 bit

Return

<Return is also similar to a jump, but

— Return instruction pops PC from stack to get
address to jump to

ret ; PC [1 stack

.

CHAPTER 8

Assembly language programming

Contents

» Assembly language programming
» Data Transfer operations
» Input/Output operations

8051 Programming in Assembly Language

» The assembly language is a fully hardware
related programming language.

» The embedded designers must have
sufficient knowledge on hardware of
particular processor or controllers before
writing the program.

» The assembly language is developed by
mnemonics; therefore, users cannot
understand it easily to modify the program.

Process

KSource File.asmw '
W

‘ Assembler POBJ
‘ Linker P}:XE

Executable
File

.

Rules of Assembly Language

» The assembly code must be written in upper
case letters

» The labels must be followed by a colon
(label:)

» All symbols and labels must begin with a
letter

» All comments are typed in lower case

» The last line of the program must be the END
directive

Assembler Directives:

» The assembling directives give the directions
to the CPU. The
8051 microcontroller consists of various
kinds of assembly directives to give the
direction to the control unit. The most useful
directives are 8051 programming, such as:

» ORG
» DB

» EQU
» END

Assembler Directives

» ORG(origin): This directive indicates the start of the
program. This is used to set the reﬁister address during
assembly. For example; ORG 0000h tells the compiler all
subsequent code starting at address 0000h.

» Syntax: ORG 0000h

» DB(define byte): The define byte is used to allow a string
of bytes. For example, print the “EDGEFX” wherein each
character is taken by the address and finally prints the
“string” by the DB directly with double quotes.

» Syntax:
» ORG 0000h
» MOV a, #00h

DB"EDGEEX”

Assembler Directives

» EQU (equivalent): The equivalent directive is used to
equate address of the variable.

» Syntax:
» reg equ,09h

MOV reg,#_2h

» END:The END directive is used to indicate the end of the
program.

» Syntax:
» reg equ,09h

MOV reg,#_Zh
END

Structure

of Assembly language

» An Assembly language program consists of,
among other things, a series of lines of
Assembly language instructions.

» An Assembly language instruction consists
of a mnemonic, optionally followed by one or

two operand
» The operanc

manipulatec

S.

s are the data items being
, and the mnemonics are the

commands to the CPU, telling it what to do
with those items.

Example

ORG O0H ;start (origin) at location 0
MOV R5, #25H ;load 25H into RS
MCV R7,#34H ;load 34H into R7

MOV A,L#0 ;load 0 into A

ADD A,RS ;add contents of RS to A
;now A = A + RS

ADD A,R7 ;add ¢ontents of R7 to A
;now A = A + R7

ADD A,#12H ;add to A value 12H
;now A = A + 12H

HERE: SJMP HERE ;stay in this loop

END ;end of asm source file

Data Transfer Instructions

Instrucciones de Movimiento de Datos

MOV DPTR #dati6 0 32

B Direccion interna IR Y Acumulador R | Registro interno NS (Ri) Indrecto Yo “,,,E:?“F?,%,,,
MOV Rn,A 11 MOV @Ri,A FGFT 11
MOV dirdr 85 32 MOV Adr - ES 2 =
MOV dir,@Ri 8687 22 WOV Addat T4 21 MOV Rn,#dat 8.7F 21 MOV [@Ri#dat ?ET? 21
MOVX A@RI E2E3 12 MOVX @RiA F2F3 12
XGH A,Rn- . CBCE 11
XCHAdir (€5 21 XCHDA@RI nﬁm‘ "

MOV dirA F5 21 /_......'E.E'E..._
MOV Rn,dir 22 MOV @Ridir ABAT 22
MOV dirddat 75 32 T | N\ S
MOVX A,@DPTR E0 12 MOVX @DPTRA 12
XCHA@RI CBLT 11

MOV dirfn 889F 22 MoV ARn - EGEF T Fo.6F
MOV A@RI EGET 11 dir
|I slruccion | I—Lidl—q_ﬂ
LA ZRY Direccion M Aso RRZ((Rlg) Ind B PILA]
 PUSHAIFYCO 22),
POP dir DB 220 ° ¢

MOVC A@A+DPTR 93 12
MOVC A,@A+PC 83 12

Data Transfer Instructions

» MOV destination, source. Data movement in the internal RAM. This type of
mstrugtlons supported by virtually all addresses, direct, indirect, recording and
immediate.

» MOV A,PO ; Mueve el contenido del puerto 0 al acumulador
MOV R1,A ; Mueve el contenido del Acumulador al registro 1

» MOVX. Data movement in the external RAM (XRAM). This type of motion only
sDuPpI_%orts indirect addressing, register 8bit by RO or R1 and 16-bit register via the

> I(\(/IjQV D_P,TI§,#2000H , Mover al registro apuntador DPTR el dato inmediato 2000H
ireccion
MOVX A,@DPTR ; Mover el contenido de la memoria que apunta el DPTR (2000H)
al Acumulador

» MOVC. Allows movement of the accumulator ROM. By this statement can make the
manipulation or movement of tables from the program memory.

» XCH. Swaps the contents of the accumulator and the internal RAM.
» XCHD. Swaps the contents of the first 4 bits of the Accumulator with internal RAM.
» PUSH and POP. To transfer data to the stack.

Data Transfer

» Computers transfer data in two ways: parallel and serial.

» In parallel data transfers, often 8 or more lines (wire conductors)
are used to transfer data to a device that is only a few feet away.
Examples of parallel transfers are printers and hard disks; each
uses cables with many wire strips. Although in such cases a lot
of data can be transferred in a short amount of time by using
many wires in parallel, the distance cannot be great.

» To transfer to a device located many meters away, the serial
method is used. In serial communication, the data is sent one bit
at a time, in contrast to parallel communication, in which the
data is sent a byte or more at a time.

» Serial communication of the 8051 is the topic of this chapter.
The 8051 has serial communication capability built into it,
thereby making possible fast data transfer using only a few
wires.

BASICS OF SERIAL
COMMUNICATION

» When a microprocessor communicates with the
outside world, it provides the data in byte-sized
chunks. In some cases, such as printers, the
information is simply grabbed from the 8-bit data
bus and presented to the 8-bit data bus of the
printer.

» This can work only if the cable is not too long, since
long cables diminish and even distort signals.
Furthermore, an 8-bit data path is expensive.

» For these reasons, serial communication is used for
transferring data between two systems located at
distances of hundreds of feet to millions of miles
apart. Figure 10-1 diagrams serial versus parallel
data transfers.

SERIAL COMMUNICATION

The fact that serial communication uses a single data line instead of
the 8-bit data line of parallel communication not only makes it much
cheaper but also enables two computers located in two different cities
to communicate over the telephone

.For serial data communication to work, the byte of data must be
converted to serial bits using a parallel-in-serial-out shift register;
then it can be transmitted over a single data line. This also means
that at the receiving end there must be a serial-in-parallel-out shift

register to receive the serial data and pack them into a byte.
Serial Transfer | Parallel Transfer

Sender Receiver Sender Receiver

\ 8
YYYYYYYY

o
=

Serial data communication
Methods

» Serial data communication uses two methods,
asynchronous and synchronous.
The synchronous method transfers a block of
data (characters) at a time, while
the asynchronous method transfers a single
byte at a time. It is possible to write software
to use either of these methods, but the
programs can be tedious and long. For this
reason, there are special 1C chips made by
many manufacturers for serial data
communications

Modes

. These chips are commonly referred to as UART (universal
asynchronous receiver-transmitter) and USART (universal
synchronous-asynchronous receiver-transmitter).

Simplex

Half Duplex

Full Dupiex

Transmitter

J

Transmitter

‘['

Receiver

Transmitter

Receiver

Receiver

Z'X

Transmitter

Receiver

Receiver

Transmitter

Data Transfer Operations in 8051

» Data transfer instructions are responsible for
transferring data between various memory storing
elements like registers, RAM, and ROM. The
execution time of these instructions varies based on
how complex an operation they have to perform.

» In the table given in next slides, we have listed all
the data transfer instruction. In the table [A]=
Accumulator; [Rn]=Register in RAM; DPTR=Data
Pointer; PC=Program Counter

» Lets take all these Data Transfer instructions one by

one.

Data Transfer Operations in 8051

» 1) MOV Instruction-The MOV instruction has two
operands, the source, and the destination. The second
operand is the source, whereas the first one is the
destination. This instruction uses various addressing
modes to move data in the RAM space of the
microcontroller.

- Examples-MOV A, RO //Moves data from the register
RO to the accumulator

- MOV RO0,50H //Moves data stored in memory location
50H to Ro

- MOV A,@RO //Uses data stored in RO register as an
address and moves the data at that location to the
accumulator

Data Transfer Operations in 8051

OPCODE OPERAND DESCRIPTION
A,Rn

MOV Moves data from
registers in register
banks of RAM to
accumulator

MOV A, Address Moves data from an
address in the RAM
space to the
accumulator

MOV A,@Rn Uses data stored in a
register as an address
and moves the data at
that address to the
accumulator

D~ T

Data Transfer Operations in 8051

OPCODE OPERAND

DESCRIPTION

MOV

MOV

MOV

A,#Data

Rn,A

Rn,Address

B - e

Moves data given by
programmer directly
to the accumulator

Moves data from the
accumulator to
registers in register
bank

Moves data from an
address in the RAM
space to a register in
the register banks

Data Transfer Operations in 8051

OPCODE OPERAND DESCRIPTION

MOV Rn,#Data Moves data given by a
programmer directly
to a register in the
register banks

MOV Address,A Moves data to an
address in the RAM
space from the
Accumulator

MOV Address,Rn Moves data to an
address in the RAM
space from a register
in the register banks

B T

Data Transfer Operations in 8051

OPCODE

MOV

MOV

MOV

OPERAND

Address,Address

Address,@Ri

Address,#Data

DESCRIPTION

Moves data from one
address to the other

Uses data stored in a
register as an address
and moves the data at
that address to a
register in the register
bank

Moves data given by
the programmer
directly to an address

Data Transfer Operations in 8051

OPCODE OPERAND

DESCRIPTION

MOV

MOV

MOV

@Rn,A

@Rn,Address

@Rn,#Data

B T

Moves data from the
accumulator to an
address which is
stored in a register

Moves data from an
address to an address
which is stored in a
register

Moves data given by
the programmer to an
address which is
stored in the register

Data Transfer Operations in 8051

» MOVC Instruction

» MOVC Instruction Is responsible for moving data
from the Program memory (Flash memory) to
the RAM for processing It.

» Example

- MOVC A, @A+DPTR

- MOVC A,@A+PC

» The table for this instruction is on the next
slide

Data Transfer Operations in 8051

OPCODE OPERAND

DESCRIPTION

MOVC A, @A+DPTR

MOVC A, @A+PC

T

Moves data to
accumulator from a
address stored in the
memory location
(internal ROM) at
A+DPTR

Moves data to
accumulator from a
address stored in the
memory
location(internal ROM)
at A+PC

Data Transfer Operations in 8051

» MOVX Instruction

» The 8051 microcontroller in most cases has an
on-chip 4K flash memory, but due to its 16-bit
address bus, It can access 64k memory locations.
Due to this reason, the 8051 can be interfaced
with external memory using ports O and 2. To
access data in this external memory, the MOVX
Instruction Is used

» The Table for this instruction starts from the next
slide.

.

Data Transfer Operations in 8051

OPERAND

DESCRIPTION

OPCODE

MOVX

A, @Rn

Moves data to
accumulator from a
memory location
(External ROM)

MOVX

@Rn,A

Moves data to
Memory location
(External ROM) from a
register in the register
bank

MOVX

A, @DPTR

Moves data to
accumulator from a
memory location
(External ROM)
pointed by the Data
Pointer

MOVX

@DPTR,A

Moves data to
Memory location
(External ROM)

Data Transfer Operations in 8051

» Stack operations

» The RAM of the 8051 microcontroller is home to a set of 32 general-
purpose registers (OOH-1FH). These registers are 8 bit wide and are
bundled in groups of 8 forming four register banks. Stack operations
can be used to place data into these registers in an efficient manner.
These stack operations use special commands (PUSH, POP) to place
and extract data from these general purposes registers.

» The PUSH operation

» The PUSH operation is used to place data into the stack. When this
command is given the value of address stored in the stack pointer is

increased by one. After incrementing the address in the stack pointer,
data is placed at that memory location. For example, when the 8051 is
powered up, it holds the address 07H. When it receives the first PUSH
:nstrqction, the address is updated to 08H, and data is stored in that
ocation.

https://technobyte.org/8051-special-function-registers-sfr/

Data Transfer Operations in 8051

» Example (R6 contains 80H and stack pointer points at
07H)

» PUSH 6; This instruction moves data stored in register R6
to O8H

» The POP operation

» The POP operation is used to extract data that is stored in
the stack. This operation is the complete opposite of the
PUSH operation. It extracts the data from the location
which the stack pointer points to and then decreases the
value of the SP by 1.

» Example (Stack pointer points at memory location 08H
which contains 50H)

» POP 6; register R6 now contains the data 50H and the
stack pointer points to O7H

Data Transfer Operations in 8051

OPCODE OPERAND DESCRIPTION

PUSH Rn Places value at the top
of the stack

POP Rn Extracts the data from
the top of the stack

Data Transfer Operations in 8051

» Exchange Instructions

» This operation is used to exchange data between
the source and the destination operands.

» Example

- XCH A, RO; exchanges the data stored in the
accumulator and RO

- XCHD A,@RO; Exchanges the lower four bits of a
memory location stored in a register with the
accumulator

Data Transfer Operations in 8051

OPCODE OPERAND DESCRIPTION

XCH A,Rn Exchanges the value
between a register
and the accumulator

XCH A,Address Exchanges the value
between the
accumulator and a
memory location in
the RAM

XCHD A,@Rn Exchanges the value
between the
accumulator and a
memory location
stored in the register

XCHD A,@Rn Exchanges the lower
four bits of a memory
location stored in a

Input Output Operations in 8051

» The 8051 has four important ports. Port O, Port 1, Port 2 and Port 3. These
ports allow the microcontroller to connect with the outside world. The four
ports of 8051 microcontrollers have certain specific functions and
corresponding features. In this post, we will have a look at the purpose of
each of these ports.

» What are the features of the four ports of 80517
Each port has 8 pins. Thus the four ports jointly comprise 32 pins.
All ports are bidirectional.

They are constructed with a D type output latch. They have output drivers
and input buffers.

We can modify their functions using software and hardware that they
connect to.

All the ports are configured as input ports on Reset.
To configure ports as an input port 1 must be written to that port
To configure it as an output port 0 must be written to it.

Input Output Operations in 8051

LR.‘ Read
Moh — Latch
q | o = [[5 J\/] EI D
Pullug’
POX
v ol Pin
PLX
ot B b a | It Bus —a— o o 1 ..
PO.X | i 1
Latch . Latoh
e ™ af | -] war '™ o
v
Pin
a. 0 Bit b. Port

1 8Bit
ARotnate
u.

Input Output Operations in 8051

Port O Features

- Address is 80H

Construction: Port 0 has a D-type latch, unidirectional buffer, and 2
FETs at each pin. It does not have an internal pull-up resistor. An
external pull-up resistor is needed when Port O is defined as an output
port.

Port O of the 8051 has two main functions: To be used as a simple
input-output port and to access external memory in conjunction with
Port 2.

» Functions of Port O
» Simple I/O port:

» When we use Port 0 as an input port, the internal latch should know
that it's being used for input, and thus, a digital 1 (FFH) is written at the
port address of 80H. This turns off the transistors causing the pin to
float in high impedance state connecting it to the input buffer. We can
read data from ‘Read Pin Data’/’Read Latch Bit.’

Input Output Operations in 8051

» When we use Port 0 as an output port, the latch
programmed to 0 will turn on. Consequently, the FET
will connect to GND. We will require an external pull
up resistor(10k Ohm) here to give a logic *1’ for using
Port O as an output port.

» When the 8051 wants to access external memory, the
address for the memory generates due to Port 0 and
Port 2. We get the lower half of the address from Port
0 and the upper half from Port 2. This is done using
ALE pulses, which help to latch the address to the
external bus. Once done, the Port O goes back to
being an input port to read data from that memory.

Input Output operations in 8051

» Working of port 0

» As mentioned above port zero has a lot up its sleeve, from reading data to addresses it
does a lot of things for the microcontroller. Therefore it is imperative for us to get a deeper
understanding of the workings of this port.

» To configure port O as an input port the internal bus writes 1 to the D flip flop and the
control pin is set to O(Upper FET is OFF). The mux is connected to Q'(0) of the D flip flop

as the control pin is 0. Due to this, the pin is connected to the input buffer which can be
read to get the input data.

» To use the port as an output port O is written to the D flip flop with the control signal being
set to 0. This enables the lower FET and disables the upper FET due to this the pin gets
connected to the ground and a zero is written to the output device. To write a 1 to the
external device the microcontroller writes 1 to the D flip flop which drives the pin to a high
iImpedance state as it is not connected to either VCC or ground. To solve this problem a
pull-up resistor is connected to the output pin which pulls the value to 5v or logic 1.

» For reading Addresses or data from external memory the Control bit is set to set to 1 which
connects the Mux to Data/address pin. The ALE pin is used to latch the address and once
that is done the port is used for data transfer.

Input Output Operations in 8051

» What are the features and functions of Port 1 in 80517
» Features of Port 1:
- Address is 90H

- Construction: Port 1 has one D latch, two unidirectional buffers, 1
FET, and one internal pull-up resistor at each pin.

- It has only one function — to act as an Input-Output port.

» The function of Port 1 —1/O port:

» When Port 1 is functioning in the capacity of an input port, a
digital ‘1’ (FFH) is written to the latch. At 90H. This turns off the

transistor, and the pin floats in a high impedance state.
Consequently, it connects to the input buffer.

» When Port 1 is functioning in the capacity of an output port, the
latch is given a ‘LOW’ signal (O0OH). This turns the FER (Field
Effect Transistor) 0. The pull-up resistor is OFF, and the port is
used as an output port.

Input Output Operations in 8051

» What are the features and functions of Port 2 in 80517
» Features of Port 2
Address is 10H

Construction: Port 2 has a D type latch, 1 FET, an internal pull-up resistor, two
unidirectional buffers, and a Control Logic block.

Its main functions are kind of similar to those of Port 0. It can be used as an
input-output port. And can access external memory in conjunction with Port O.

» Functions of Port 2
» 1/O port:

» Quite similar to Port 0. The only difference here is that in Port 2, we use one
FET with an internal pull-up resistor instead of the two FETs we saw in Port O.

» Memory Access:

» Port 2 is used in conjunction with Port O to generate the upper address of the
external memory location that needs to be accessed. However, one key
difference is that it doesn’t need to turnaround and get a 1 in the latch
immediately for input as in Port O. It can remain stable.

Input Output Operations in 8051

What are the features and functions of Port 3 in 80517
Features of Port 3

- Address is BOH
- Construction: The third Port of 8051 has a D-type latch. In

addition to that, it has three unidirectional buffers. A FET with an
Internal pull-up resistor. Additionally, it also has a NAND gate
connected to the FET.

- Port 3 performs two main functions, as we will see below.

v Vv Vv VvV Vv

Functions of Port 3

/O port

Just like Port 2, Port 3 can function as an input-output port.
Alternate SFR function

The input to SFR 1, we get the output of latch as 1, which turns
on the NAND gate, and depending on the value of ‘Alternate
Output Pin,” FET will be wither ON/OFF.

Input Output Operations in 8051

P3 Bit Function Pin

RXD: this is used for a serial input port P30 RxD 10
TXD: this is used for serial output port P3| TxD T
INTO: this used for an external interrupt O - ——

INT1: this used for external interrupt 1 P3.2 INTO 12

TO: Timer 0 external input P33 INT] 13
T1: Timer 1 external input P34 TO 14
WR: external data memory write strobe P35 T1 15
RD: external data memory Read strobe P36 WR 16

P3.7 RD |7

Instruction sets for Ports

MOV MOV A,Port Moves data from a given
port to the accumulator
JNB JNB Checks the value in the input

Port,Address buffer. If the value is zero
then it transfers the control
to the given address

JB JB Port,Address Checks the value in the input
buffer. If the value is not
zero then it transfers the
control to the given address

CJNE CJNE Checks the value in the input

A,Port,Address buffer of a port. Compares it
to the value in the
accumulator. If the values
are not the same then the
control is transferred to a
given address

T S~ 22—

Instruction sets for Ports

INSTRUCTION EXAMPLE EXPLANATION

ANL ANL PT, A Performs logical AND between
the value stored in the latch of
the port and the accumulator

ORL ORL P1, A Performs logical OR between
the value stored in the latch of
the port and the accumulator.
After this, it writes the new
value to the latch

XRL XRL P1, A Performs logical XOR between
the value stored in the latch of
the port and the accumulator.
After this, it writes the new
value to the latch

JBC JBC,Port,Add If the value at a given port is 1
ress then it jumps to a given
address and then clears the
latch

Instruction sets for Ports

INSTRUCTION EXAMPLE EXPLANATION

CPL CPL,Port Complements the
data in the latch
MOV MOV Port,C Reads the value at the

latch of a given port
and then transfers it
to the carry flag

CLR CLR Port Clears the value
stored at the latch of
a port

SETB SETB Port Sets the value of a

latch

Chapter 9

Design and Interfacing with
8051

Contents

» keypad interface

» 7- segment interface

» LCD Interfacing

» Stepper motor Interfacing

.

Interfacing the keyboard to the
8051

>

At the lowest level, keyboards are organized in a
matrix of rows and columns.

The CPU accesses both rows and columns through
ports; therefore, with two 8-bit ports, an 8 x 8 matrix
of keys can be connected to a microprocessor.

When a key is pressed, a row and a column make a
contact; otherwise, there is no

In such systems, it is the function of programs stored
in the EPROM of the microcontroller to scan the keys
continuously, identify which one has been activated,
and present it to the motherboard. In this section we
look at the mechanism by which the 8051 scans and
identifies the key.

4x4 Keypad

» 4 X 4 matrix connected to two ports. The rows
are connected to an output port and the columns
are connected to an input port.

» If no key has been pressed, reading the input
port will yield 1 s for all columns since they are
all connected to high (V).

» If all the rows are grounded and a key is
pressed, one of the columns will have O since the
key pressed provides the path to ground.

» It is the function of the microcontroller to scan
the keyboard continuously to detect and identify
the key pressed.

Keypad

» Keypad is used as an input device to read the key
pressed by user and to process it.

» 4x4 keypad consists of 4 rows and 4 columns.
Switches are placed between the rows and
columns. A key press establishes a connection
between corresponding row and column between
which the switch is placed.

» To read the key press, we need to configure the
rows as outputs and columns as inputs.

» Columns are read after applying signals to the
rows in order to determine whether or not a key
is pressed and if pressed, which key is pressed.

Interfacing

2 —
S £
Q.
NN) pr——— O
PG| BN Wﬂ Pl o
o - @ o
e A) =
Y| Y| o] e o
- w a [w)
NN T 1 o~
Xl 2 >d x4 o
o~ o << w
o«
= pCY pCl pCl P
< ™ ~ (e4] uw

Port 1
(Out)

HEEE
RIBIEE

EEEE
BEE

LCD Interfacing

» Display units are the most important output
devices in embedded projects and electronics
products. 16x2 LCD is one of the most used
display unit. 16x2 LCD means that there are
two rows in which 16 characters can be
displayed per line, and each character takes
5X7 matrix space on LCD.

LCD Pins

» LCD 16x2 is 16 pin device which has 8 data pins (DO-
D7) and 3 control pins (RS, RW, EN). The remaining 5
pins are for supply and backlight for the LCD.

» The control pins help us configure the LCD in
command mode or data mode. They also help
configure read mode or write mode and also when to
read or write.

» LCD 16x2 can be used in 4-bit mode or 8-bit mode
depending on the requirement of the application. In
order to use it we need to send certain commands to
the LCD in command mode and once the LCD is
configured according to our need, we can send the
required data in data mode.

LCD PINS

Pin Name Function

number

1 VSS Ground voltage

2 VEE +5V

3 VCC Contrast voltage

= RS Register select
1-Data register
0-Instruction register

5 R'W Read/Write mode. to select read/write mode
0-write mode
1-read mode

6 E Enable
(0-Start to latch data to LCD character
1-Disable

7 DBO0 Data bit 0 (LSB BIT)

8 DBI1 Databit 1

9 DB2 Data bit 2

10 DB3 Data bit 3

11 DB4 Databit 4

12 DB3 Data bit 3

13 DB6 Data bit 6

14 DB7 Data bit 7 (MSB)
Black Plane Light (+5V) or lower (optional)
Ground voltage (optional)

Interfacing

LCD 16x2 I

eset]

[H]

P20 12

8051 P23

N
W

é R P11
82K P1.2
P13
P14
31 &

12 MHz 5
P16

@ o o e ju v |«

— LA Pl:'l
oy i 19 XTALE

ElectronicWings.com

LCD Initialization

» For initializing the LCD, the following are the
steps that are given below and these steps
are the same for almost all the applications.

» Send 38H to the 8-bit data line for
initialization
» Send OFH for making LCD ON, cursor ON,

cursor b
» Send 06
» Send O1

inking ON
H for incrementing cursor position

H for clearing the display and return

the cursor

Steps for Sending Data to the LCD

» The logic state of these pins that make the
module to determine whether a given data
input is a data or command to be displayed.

» Ma

» Ma
dis

ke R/W low
ke RS=1, if the data byte is a data to be

nlayed and make

» RS=0, if the data byte is a command.
» Place data byte on the data register
» Then pulse E from high to low

» Repeat the above steps for sending other
data

Seven segment displays

» Seven segment displays internally consist of 8
LEDs. In these LEDs, 7 LEDs are used to indicate
the digits 0 to 9 and single LED is used for
indicating decimal point. Generally seven
segments are two types, one is common cathode
and the other is common anode.

» In common cathode, all the cathodes of LEDs are
tied together and labeled as com. and the anode
are left alone. In common anode, seven segment
display all the anodes are tied together and
cathodes are left freely. Below figure shows the
internal connections of seven segment Display.

Seven segment displays

D1

0

D2

common cathode

@)

o

common anode

=
8
a Ob c d B t q dp . 4
pg [p10]p11 Ip12 (D13 [D14 D15 | D16
p3 |o4 |os |oé |o7 |os . "
O O

E
8

o
-]

Interfacing 7 Segment Display to
8051

| 7 19
e ey 25 Tl
11.0592MHz[]
" 18 I xraL2
& I I .
»- 33pF
A - 9 | rsT
—®
+5V
(o) ==+ e
%g_. PSEN
o *\ \v -3?— 5-L—E
10uF/16V -
Reset 1 oy
ELECTRONICS m— P1.0
! :
- =5 P1.1
——1 P1.2
——] P13
—=—1 P14
1 —=—1 P15
| —— P16
il PAT

P0.0/ADO -%g
PO.1/AD1 (22
PO.2/AD2 -—-3-6-
PO.3/AD3 —3—5-
PO.4/AD4 [—22
PO.S/ADS (2o
P0.6/AD6 —é-i-
PO.7/AD7 =22
P2.0/A8 —%;
P21/A9 |22
P2.2/A10 (23
P2.3/A11 (22
P2.4/A12 [—22
P2.5/A13 [—22
P2.6/A14 (2L
P2.7/IA15
P3.0/RXD +?
P3.1/TXD BEF
P3.2/INTO EEE)
P3.3/INT1 =1
P3.4/TO =t
P35I 2
P3.6MR ==
P3.7/RD p—

AT89C51

Stepper Motor

» A stepper motor is a brushless and synchronous
motor which divides the complete rotation into
number of steps. Each stepper motor will have some
fixed step angle and motor rotates at this angle.

» To interface a Stepper Motor with 8051 two different
drivers: L293D and ULN 2003 are required.

» The main principle of these circuits is to rotate the
stepper motor step wise at a particular step angle.

» The step size of the motor is determined by the
number of phases and the number of teeth on the
rotor. Step size is the angular displacement of the
rotor in one step.

Stepper Motor

s1.| 4+ © : M1
T 10uFM O 9 Stepper Motar

T RST
Al
R P1.0 16
82K P11 +5V H—§
A2
1 o1 P12 15
- ATS9S52 P13

2 g
c2 . ULN2003
— XTALT

sy

du LA P

33pF 18 122

ca == X1 12 |44
+— '8 xTaL2 8

33pF

HK1=11.0552 MHz lzu

Interfacing stepper motor to 8051

4

v

P1.0, P1.1, P1.2 and P1.3 pins are used for controlling the
phases Al, A2, A3 and A4 of the stepper motor respectively.

ULN2003 is used for driving the individual phases of
the stepper motor. ULN2003 is used for driving high current
loads such as relays and motors.

ULN2003 has 8 individual channels each with 1A capacity. The
channels can be paralleled to increase the current capacity. Each
channels are fitted with individual freewheeling diodes.

The ULN2003 is operated in current sinking mode. Each channel
is activated by giving a logic LOW at the corresponding input.

For example if we make pin 1 of ULN2003 LOW, phase A1 of the
stepper motor gets switched ON.

Chapter 10

Application of
Micro controllers

Microcontroller

» Microcontroller is termed as “Computer-on-
a-Chip“. It is named so, because not only the
CPU, but RAM, ROM, |/0 ports,
Timer/Counter, Serial 1/0Os all are put
together on a single microcontroller chip.
Microcontrollers are task specific and are
essentially used for making Embedded

Systems.

Classification According to Number of
Bits

» The bits in microcontroller are 8-bits, 16-bits
and 32-bits microcontroller.

» In 8-bit microcontroller, the point when the
internal bus is 8-bit then the ALU is performs
the arithmetic and logic operations.

» The examples of 8-bit microcontrollers are
Intel 8031/8051, PIC1x and Motorola
MC68HCI11 families.

16-bit microcontroller

» The 16-bit microcontroller performs greater
precision and performance as compared to 8-bit. For
example 8 bit microcontrollers can only use 8 bits,

resulting in a final range of 0x00 - OxFF (0-255) for
every cycle.

» In contrast, 16 bit microcontrollers with its 16 bit
data width has a range of 0x0000 - OxFFFF (0-
65535) for every cycle. A longer timer most extreme
worth can likely prove to be useful in certain
applications and circuits. It can automatically operate
on two 16 bit numbers.

» Some examples of 16-bit microcontroller are 16-bit
MCUs are extended 8051XA, PIC2x, Intel 8096 and
Motorola MC68HCT1 2 families.

32-bit Microcontroller

» The 32-bit microcontroller uses the 32-bit
instructions to perform the arithmetic and
logic operations.

» These are used in automatically controlled
devices including implantable medical
devices, engine control systems, office
machines, appliances and other types of
embedded systems.

» Some examples are Intel/Atmel 251 family,
PIC3x.

Types of Microcontroller

MICROCONTROLLERS

.............

Applications of AVR
Microcontroller

» There are many applications of
AVR microcontroller; they are
used in home automation,
touch screen, automobiles,
medical devices and defense.

PIC Microcontroller

» PIC microcontrollers (Programmable Interface
Controllers), are electronic circuits that can
be programmed to carry out a vast range of
tasks. They can be programmed to be timers

or to control a production line and much
more.

» Arduino is based on the Atmel Atmega
series microcontrollers while PIC(Pheripheral
Interface Controller) is
a microcontroller family specially designed
for peripheral interfaces.

Features of PIC

» Flash memory (program memory,
programmed using MPLAB devices)

» SRAM (data memory)

» EEPROM memory (programmable at run-time)
» Sleep mode (power savings)

» Watchdog timer.

» Various crystal or RC oscillator
configurations, or an external clock.

Main Difference between AVR, ARM, 2051 and PIC Microcontrollers

Bus wiah

Protocods

Spe=a
Memory

t54

8051

5-hitfurstxuhtdc:ru

PIC

anars2-bit

UART, USART, SPLIZC PIC, UART, USART.

12 Cioddmstructon
cycle
ROM,. SRAM, FLASH

TLSC

Mamory Architecturs Voo Neownann

architecture

Power Consumption Avernge

Familie=

CosTuTsanily

AMeE! ..-‘-.

Coat (=8
compsrsg to feajiuwras
provigsy

Other Featurs

Populsr
Microcontroliers

BDOSY vanants
‘Va:u

NXP, Atrreesl, Silicon
L abs, Dalless, Cyprus,
Infincon, etc.

Very Law

HKnown for = Standoard

ATBOCS?, PEQuST, mix.

LiIN, CAN, Ethome,
SPL12Ss

4 Clockiin=truction
SRAM. FLASH

Saome feature of RISC
Horverd sscchitecthure
Loww
PICT&.PIC17, PICH8,
PIcC24, PC32

Very Good

Micraochip Average

Average

Cheap

PICiaDOxs,

AV

UART, USART, S&1,

2C, (spocal purpose
AVR support CAN.,

USS, Ethernnet)

Ty, Almegn, Xmeg,
special purpase AVR
Veary Good

Averages

Cheap, effectve

AtmegaB. 16, 32,

FPIC16I88X, PICI2MXOX Arduing Commumursty

ARM

32 -bit mosty aiso
orvailable in 64-tat
UART, USART. LN
12C, S22, CAN, USB,
Ethemet, 25 DSP,
SAIl (mensal cudio
irferface), FDA

ARMvd 56,7 aand
srrie=

Vast

Aople, Nhvidia,
Cualcoerun, Samsung
Eloctronics,. arnd T e
Law

High speed cperaSon

Varst

LPC2146, ARM Cortes
MO 1o ARM Cortex-M7,

Applications

8051 Products

» Consumer Electronics Products:

» Toys, Cameras, Robots, Washing Machine, Microwave Ovens etc.
[any automatic home appliance

» 2. Instrumentation and Process Control:

» Oscilloscopes, Multi-meter, Leakage Current Tester, Data
Acquisition and Control etc.

3. Medical Instruments:

ECG Machine, Accu-Check etc.

4. Communication:

Cell Phones, Telephone Sets, Answering Machines etc.
5. Office EQuipment:

Fax, Printers etc.

6. Multimedia Application:

Mp3 Player, PDAs etc.

7. Automobile:

Speedometer, Auto-breaking system etc.

4
4
4
4
4
4
4
4
>
4

