1.5 ARCHITECTURAL DRAWING-I

UNIT I

Introduction to the Studio Environment

i) Basics of drafting instruments, starting off
ii) Basics of stationery (Pencils, sharpening, types of sheets, erasers, cutter etc.)
iii) Demonstration by the teacher on holding pencils, fixing parallel bar and handling other tools and equipment used in Architectural Drawing(Demonstration sheet to be put up for better understanding)

UNIT II

Line Work

1. Basic line work, with different pencil thickness \& intensities $\mathrm{H}, \mathrm{HB}, 2 \mathrm{~B}, 4 \mathrm{~B}, 6 \mathrm{~B}$
i) Horizontallines
ii) Vertical lines
iii) Grid
iv) Diagonal lines
v) Composition, pattern making in line work
(Using different grades of pencils to understand the tonal variation)
2. Lettering using different pencils \& pens ,stencils(4 sheets) Different styles, heights \&intensities
3. Introduction to Scale (1sheet)

Use of the modular scale - both metric system and FPS

UNIT III

4. Geometric Shapes (Plan, elevation etc.) (2sheets)
i) Simple geometric (cubes, cylinder, cones etc.)
ii) Complex(fusion of the basic shapes (Incorporating he use of scale both feet \&metric)
5. Dimensioning (2 Sheets)
i) Elements of dimensioning
ii) Methods of dimensioning
iii) Arrangements of dimensions
iv) Symbols for shape indication

UNIT IV

6. Orthographic Projections (Introduction to Planes) (2sheets)
i) Protection of points
ii) Projections of lines
iii) Projection of solids
7. Section of Solids (4sheets)

Simple geometrical shapes e.g. cube: Elementary building sections highlighting line intensities for sectional and elevation components. (Example: parapet, chajj as in section and elevation behind)
8. Development of surface (1 sheet)

Development with an aim to calculate areas if required

UNIT V

9. Isometric Views (3sheets)

Conversion of 2D geometrical shapes into 3D isometric views (30to realize the potential of each

Drawing

A drawing is a graphic representation of an object, or a part of it, and is the result of creative thought by an engineer or technician. When one person sketches a rough map in giving direction to another, this is graphic communication. Graphic communication involves using visual materials to relate ideas. Drawings, photographs, slides, transparencies, and sketches are all forms of graphic communication. Any medium that uses a graphic image to aid in conveying a message, instructions, or an idea is involved in graphic communication.

Engineering drawing:

The engineering drawing, on the other hand, is not subtle, or abstract. It does not require an understanding of its creator, only an understanding of engineering drawings. An engineering drawing is a means of clearly and concisely communicating all of the information necessary to transform an idea or a concept in to reality. Therefore, an engineering drawing often contains more than just a graphic representation of its subject. It also contains dimensions, notes and specifications.

Drawing Sheets

A Series Formats	
(mm)	

Drawing Tools:

DRAWING TOOLS
DRAWING TOOLS

DRAWING TOOLS

3. Adhesive Tape

4. Pencils

1. T-Square

2. Triangles

DRAWING TOOLS

5. Sandpaper

6. Compass

DRAWING TOOLS

7. Pencil Eraser DRAWING TOOLS

11. Sharpener

12. Clean paper

Lettering in Engineering Drawing

Lettering is used to provide easy to read and understand information to supplement a drawing in the form of notes and annotations. Lettering is an essential element in both traditional drawing and Computer Aided Design (CAD) drawing. Thus, it must be written with:
Legibility - shape \& space between letters and words.
Uniformity - size \& line thickness.

Types of Lettering

The two types of lettering are:

1. Double Stroke Lettering: In Double Stroke Lettering the line width is greater than that of
Single Stroke Lettering.
Double Stroke Lettering is further divided into:
a) Double Stroke Vertical Gothic Lettering.
b) Double Stroke Inclined Gothic Lettering.

A stencil is mostly used when hand drawing double stroked letters.
2. Single Stroke Lettering: Thickness in single stroke lettering is obtained by a single stroke of pencil or ink pen. It is further divided into:
(a) Single Stroke Vertical Gothic Lettering.
(b) Single Stroke Inclined Gothic Lettering.

Conventions for Lettering

© Use all CAPITAL LETTERS.
© Use ${ }^{\text {even }}$ pressure to draw precise, clean lines.
® Use one stroke per line.
© Horizontal Strokes are drawn left to right.
© Vertical Strokes are drawn downward.
© Curved strokes are drawn top to bottom in one continuous stroke on each side.
© Use The Single-stroke, Gothic Style of Lettering.

- Always Skip A Space between Rows Of Letters.
© Always Use Very Light Guide Lines.
© Fractions Are Lettered Twice the Height Of Normal Letters.
© Fraction Bars Are Always Drawn Horizontal.
© Use a Medium Lead For Normal Lettering.
© Use a Hard Lead For Drawing Guide Lines.

Placement of Text on Engineering Drawings

Text on drawings : Example

Layout of a drawing sheet

Every drawing sheet is to follow a particular layout. As a standard practice sufficient margins are to be provided on all sides of the drawingsheet. The drawing sheet should have drawing space and title page. A typical layout of a drawing sheet is shown in the figure below:

Figure 1. A typical layout of a drawing sheet.

Basics of Single Stroking

Spacing

Uniformity in spacing of letters is a matter of equalizing spaces by eye.
© The background area between letters, not the distance between them, should be approximately equal.
© Words are spaced well apart, but letters within words should be spaced closely.

SCALE

A scale is defined as the ratio of the linear dimensions of the object as represented in a drawing to the actual dimensions of the same.

Necessity

- Drawings drawn with the same size as the objects are called full sized drawing.
- It is not convenient, always, to draw drawings of the object to its actual size. e.g. Buildings, Heavy machines, Bridges, Watches, Electronic devices etc.
- Hence scales are used to prepare drawing at
- Full size
- Reduced size
- Enlarged size

BIS Recommended Scales

Reducing scales	$1: 2$	$1: 5$	$1: 10$
	$1: 20$	$1: 50$	$1: 100$
$1: Y(Y>1)$	$1: 200$	$1: 500$	$1: 1000$
	$1: 2000$	$1: 5000$	$1: 10000$
Enlarging scales	$50: 1$	$20: 1$	$10: 1$
$\mathrm{X}: 1(\mathrm{X}>1)$	$5: 1$	$2: 1$	
Full size scales			$1: 1$

Intermediate scales can be used in exceptional cases where recommended scales can not be applied for functional reasons.

Types of Scale

- Engineers Scale :

The relation between the dimension on the drawing and the actual dimension of the object is mentioned numerically (like $\mathbf{1 0} \mathbf{~ m m}=15 \mathrm{~m}$).

- Graphical Scale:

Scale is drawn on the drawing itself. This takes care of the shrinkage of the engineer's scale when the drawing becomes old.

Types of Graphical Scale

- Plain Scale
- Diagonal Scale
- Vernier Scale
- Comparative scale

Representative fraction (R.F.)

$$
\text { R.F. }=\frac{\text { Length of an object on the drawing }}{\text { Actual Length of the object }}
$$

When a 1 cm long line in a drawing represents 1 meter length of the object,

$$
R . F=\frac{1 \mathrm{~cm}}{1 \mathrm{~m}}=\frac{1 \mathrm{~cm}}{1 \times 100 \mathrm{~cm}}=\frac{1}{100}
$$

Plain scale

- A plain scale consists of a line divided into suitable number of equal units. The first unit is subdivided into smaller parts.
- The zero should be placed at the end of the $1^{\text {st }}$ main unit.
- From the zero mark, the units should be numbered to the right and the sub-divisions to the left.
- The units and the subdivisions should be labeled clearly.
- The R.F. should be mentioned below the scale.

Construct a scale of $1: 4$, to show centimeters and long enough to measure up to 5 decimeters.

- R.F. $=1 / 4$
- Length of the scale $=$ R.F. \times max. length $=1 / 4 \times 5 \mathrm{dm}=12.5 \mathrm{~cm}$.
- Draw a line 12.5 cm long and divide it in to 5 equal divisions, each representing 1 dm .
- Mark 0 at the end of the first division and 1,2,3 and 4 at the end of each subsequent division to its right.
- Divide the first division into 10 equal sub-divisions, each representing 1 cm .
- Mark cm to the left of 0 as shown.

Ouestion: Construct a scale of $1: 4$, to show centimeters and long enough to measure up to 5 decimeters

Draw the scale as a rectangle of small width (about 3 mm) instead of only a line.

- Draw the division lines showing decimeters throughout the width of the scale.
- Draw thick and dark horizontal lines in the middle of all alternate divisions and sub-divisions.
- Below the scale, print DECIMETERS on the right hand side, CENTIMERTERS on the left hand side, and R.F. in the middle.

Diagonal Scale

- Through Diagonal scale, measurements can be up to second decimal (e.g. 4.35).
- Diagonal scales are used to measure distances in a unit and its immediate two subdivisions; e.g. $d m$, $c m \& m m$, or yard, foot \& inch.
- Diagonal scale can measure more accurately than the plain scale.

Diagonal scale.....Concept

- At end B of line $A B$, draw a perpendicular.
- Step-off ten equal divisions of any length along the perpendicular starting from B and ending at C .
- Number the division points 9,8,7,.....1.
- Join A with C.
- Through the points 1, 2, 3, etc., draw lines parallel to AB and cutting AC at $\mathbf{1}^{\prime}, 2^{\prime}, 3^{\prime}$, etc.
- Since the triangles are similar; $\mathbf{1}^{\prime} \mathbf{1}=0.1 \mathrm{AB}$, $2^{\prime} 2=0.2 \mathrm{AB}, \ldots .9^{\prime} 9=0.9 \mathrm{AB}$.
- Gives divisions of a given short line $A B$ in multiples of $1 / 10$ its length, e.g. $0.1 \mathrm{AB}, 0.2 \mathrm{AB}$,
 0.3 AB , etc.

Construct a Diagonal scale of $\mathrm{RF}=3: 200$ (i.e. 1:66 2/3) showing meters, decimeters and centimeters. The scale should measure up to 6 meters. Show a distance of 4.56 meters

- Length of the scale $=(3 / 200) \times 6 \mathrm{~m}=9 \mathrm{~cm}$
- Draw a line $A B=9 \mathrm{~cm}$. Divide it in to 6 equal parts.
- Divide the first part A0 into 10 equal divisions.
- At A draw a perpendicular and step-off along it 10 equal divisions, ending at D .

Diagonal Scale

- Complete the rectangle ABCD. ${ }^{200}$
- Draw perpendiculars at meter-divisions i.e. 1, 2, 3, and 4.
- Draw horizontal lines through the division points on AD. Join D with the end of the first division along $A 0$ (i.e. 9).
- Through the remaining points i.e. 8, 7, 6, ... draw lines // to D9.
- $P Q=4.56$ meters

Vernier Scales

- Similar to Diagonal scale, Vernier scale is used for measuring up to second decimal.
- A Vernier scale consists of (i) a primary scale and (ii) a vernier.
- The primary scale is a plain scale fully divided in to minor divisions.
- The graduations on the vernier are derived from those on the primary scale.
Least count (LC) is the minimum distance that can be measured.
Forward Vernier Scale:
MSD>VSD; LC = MSD-VSD

Backward Vernier scale:
VSD $>$ MSD; LC = VSD - MSD

Vernier scale.... Concept

- Length A0 represents 10 cm and is divided in to 10 equal parts each representing 1 cm .
- $\mathbf{B 0}=11$ (i.e. $10+1$) such equal parts $=11 \mathrm{~cm}$.
- Divide B0 into 10 equal divisions. Each division of B0 will be equal to $11 / 10=1.1 \mathrm{~cm}$ or 11 mm .
- Difference between 1 part of $A 0$ and one part of $B 0=1.1 \mathrm{~cm}-1.0$ $\mathrm{cm}=0.1 \mathrm{~cm}$ or 1 mm .

Ouestion: Draw a Vernier scale of R.F. $=\mathbf{1 / 2 5}$ to read up to 4 meters. On it show lengths 2.39 m and 0.91 m

CENTIMETRES

DECIMETRES

- Length of Scale $=(1 / 25) \times(4 \times 100)=16 \mathrm{~cm}$
- Draw a 16 cm long line and divide it into 4 equal parts. Each part is 1 meter. Divide each of these parts in to 10 equal parts to show decimeter (10 cm).
- Take 11 parts of dm length and divide it in to 10 equal parts. Each of these parts will show a length of 1.1 dm or 11 cm .
- To measure 2.39 m , place one leg of the divider at A on 99 cm mark and other leg at B on 1.4 mark. $(0.99+1.4=2.39)$.
- To measure 0.91 m , place the divider at C and $D(0.8+0.11=0.91)$.

Ouestion: Draw a Vernier scale of R.F. $=\mathbf{1 / 2 5}$ to read up to 4 meters. On it show lengths 2.39 m and 0.91 m

CENTIMETRES

DECIMETRES

- Length of Scale $=(1 / 25) \times(4 \times 100)=16 \mathrm{~cm}$
- Draw a 16 cm long line and divide it into 4 equal parts. Each part is 1 meter. Divide each of these parts in to 10 equal parts to show decimeter (10 cm).
- Take 11 parts of dm length and divide it in to 10 equal parts. Each of these parts will show a length of 1.1 dm or 11 cm .
- To measure 2.39 m , place one leg of the divider at A on 99 cm mark and other leg at B on 1.4 mark. $(0.99+1.4=2.39)$.
- To measure 0.91 m , place the divider at C and $D(0.8+0.11=0.91)$.

Orthographic Projections

- Orthographic Projections is a technical drawing in which different views of an object are projected on different reference planes observing perpendicular to respective reference plane.
■ Different Reference planes are;
- Horizontal Plane (HP)
- Vertical Plane (VP)
- Side or Profile Plane (PP)

■ Different views are;

- Front View (FV) - Projected on VP
- Top View (TV) - Projected on HP
- Side View (SV) - Projected on PP

Types of views

View comparison

Type		
Multi-view drawing	Accurately presents object's details, i.e. size and shape.	Require training to visualization.
Pictorial drawing	- Easy to visualize.	Shape and angle distortion Circular hole becomes ellipse Right angle becomes obtuse angle.
Perspective drawing	Object looks more like what our eyes perceive.	Difficult to create Size and shape distortion

PLANES

AUXILIARY PLANES

Auxiliary Vertical Plane

Auxiliary Inclined Plane

Profile Plane

Projection symbols

$1^{\text {st }}$ angle system

$3^{\text {rd }}$ angle system

Methods of Orthogonal Projection

1. Natural Method: Revolve the object with respect to observer
2. Glass box method: The observer moves around the object.

Steps for Orthographic Views

1. Select the necessary views
2. Layout the selected views on a drawing sheet.
3. Complete each selected views.
4. Complete the dimensions and notes.

Lines and Planes

GUADRILATERALS

square

RECTANGIE

RHombus FARALLELOGRAMS

RECULAR POLYEONS

PENTAGDN

Solids

TETRAHEDRON

HEXAHEDRON

OCTAHEDRON

DODECAHEDRON

ICOSAHEDRON

SQUARE

CUBE

OBLIQUE
RECTANGULAR

RIGHT

TRIANGULAR

OBLIQUE PENTAGONAL

RIGHT

TRUNCATED

CONES

oblique

FRUSTUM TRUNCATED

SQUARE

ROUND

PLINTHS

Curved surfaces

Primitive geometric forms

- Point
- Line
- Plane
- Solid
-etc

The basic 2-D geometric primitives, from which other more complex geometric forms are derived.
$>$ Points,
$>$ Lines,
\Rightarrow Circles, and
$>$ Arcs.

Point

\Rightarrow A theoretical location that has neither width, height, nor depth.
> Describes exact location in space.
> A point is represented in technical drawing as a small cross made of dashes that are approximately 3 mm long.

A point is used to mark the locations of centers and loci, the intersection ends, middle of entities.

Line

$>$ A geometric primitive that has length and direction, but no thickness.
$>$ It may be straight, curved or a combination of these.
$>$
conditions, such as parallel, intersecting, and tangent.
> Lines - specific length and non-specific length.
> Ray - Straight line that extends to infinity from a specified point.

Relationship of one line to another line or arc

Parallel Line Condition

Intersecting Lines

Nonparallel Line Condition

Tangent Condition

Line at the Intersection of Two Planes (Edge)

Bisecting a line

Dividing a line into equal parts

- Draw a line MO at any convenient angle (preferably an acute angle) from point M.
- From M and along MO, cut off with a divider equal divisions (say three) of any convenient length.
- Draw a line joining RN.
- Draw lines parallel to RN through the remaining points on line MO. The intersection of these lines with line MN will divide the line into (three) equal parts.

Planar tangent condition exists when two geometric forms meet at a single point and do not intersect.

Locating tangent points on circle and arcs

(A)

Drawing an arc tangent to a given point on the line

Steps

- Given line $A B$ and tangent point T. Construct a line perpendicular to line AB and through point T .
- Locate the center of the arc by making the radius on the perpendicular line. Put the point of the compass at the center of the arc, set the compass for the radius of the arc, and draw the arc which will be tangent to the line through the point T .

Drawing an arc, tangent to two lines

Right Angle
(B)

Drawing an arc, tangent to a line and an arc

(a) that do not intersect
(b) that intersect

Given $R=1.00$

Construction of Regular Polygon of given length $A B$

Draw a line of length AB. With A as centre and radius $A B$, draw a semicircle.

With the divider, divide the semicircle into the number of sides of the polygon.
Draw a line joining A with the second division-point 2.

Construction of Regular Polygon of given length AB......

The perpendicular bisectors of $A 2$ and $A B$ meet at O. Draw a circle with centre O and radius OA. With length A2, mark points F, E, D \& C on the circumferences starting from 2 (Inscribe circle method)

With centre B and radius $A B$ draw an arc cutting the line $A 6$ produced at C. Repeat this for other points D, E \& F (Arc method)

General method of drawing any polygon

Draw $A B=$ given length of polygon At B, Draw BP perpendicular \& $=A B$

Draw Straight line AP
With center B and radius $A B$, draw arc AP.
The perpendicular bisector of $A B$ meets st. line AP and arc AP in 4 and 6 respectively.
Draw circles with centers as $4,5, \& 6$ and radii as $4 \mathrm{~B}, 5 \mathrm{~B}$, \& 6B and inscribe a square, pentagon, \& hexagon in the respective circles.

Mark point 7, 8, etc with 6-7,7-8,etc. $=4-5$ to get the centers of circles of heptagon and octagon, etc.

Inscribe a circle inside a regular polygon

- Bisect any two adjacent internal angles of the polygon.
- From the intersection of these lines, draw a perpendicular to any one side of the polygon (say OP).
- With OP as radius, draw the circle with 0 as center.

Inscribe a regular polygon of any number of sides (say $\mathrm{n}=5$), in a circle

Draw the circle with diameter AB.

Divide $A B$ in to " n " equal parts Number them.

With center A \& B and radius $A B$, draw arcs to intersect at P.

Draw line P2 and produce it to meet the circle at C.
$A C$ is the length of the side of the polygon.

Inside a regular polygon, draw the same number of equal circles as the side of the polygon, each circle touching one side of the polygon and two of the other circles.

- Draw bisectors of all the angles of the polygon, meeting at 0 , thus dividing the polygon into the same number of triangles.
- In each triangle inscribe a circle.

Inside a regular polygon, draw the same number of equal circles as the side of the polygon, each circle touching two adjacent sides of the polygon and two of the other circles.

- Draw the perpendicular bisectors of the sides of the polygon to obtain same number of quadrilaterals as the number of sides of the polygon.
- Inscribe a circle inside each quadrilateral.

To draw a circle touching three lines inclined to each other but not forming a triangle.

- Let $A B, B C$, and $A D$ be the lines.
- Draw bisectors of the two angles, intersecting at 0 .
- From 0 draw a perpendicular to any one line intersecting it at P.
- With O as center and OP as radius draw the desired circle.

Outside a regular polygon, draw the same number of equal circles as the side of the polygon, each circle touching one side of the polygon and two of the other circles.

- Draw bisectors of two adjacent angles and produce them outside the polygon.
- Draw a circle touching the extended bisectors and the side $A B$ (in this case) and repeat the same for other sides.

Construction of an arc tangent of given radius to two given arcs

- Given - Arcs of radii M and N. Draw an arc of radius $A B$ units which is tangent to both the given arcs. Centers of the given arcs are inside the required tangent arc.

Steps:
From centers C and D of the given arcs, draw construction arcs of radii $(\mathrm{AB}-\mathrm{M})$ and (AB N), respectively.

With the intersection point as the center, draw an arc of radius AB.

This arc will be tangent to the two given arcs.

Locate the tangent points T1 and T2.

Construction of line tangents to two circles (Open belt)

Given: Circles of radii R1 and R with centers \mathbf{O} and P , respectively.

Steps:

With P as center and a radius equal to ($\mathbf{R}-\mathbf{R 1}$) draw an arc.
Locate the midpoint of $\mathbf{O P}$ as perpendicular bisector of OP as "M".

With as centre and radius draw a semicircle.

Locate the intersection point \mathbf{T} between the semicircle and the
 circle with radius (R-R1).
draw a line PT and extend it to locate T1.
Draw OT2 parallel to PT1.
The line $\mathbf{T} \mathbf{1}$ to $\mathbf{T} \mathbf{2}$ is the required tangent

Construction of line tangents to two circles (crossed belt)

Given: Two circles of radii $\mathbf{R} 1$ and \mathbf{R} with centers \mathbf{O} and P, respectively.

Steps:

Using \mathbf{P} as a center and a radius equal to $(\mathbf{R}+\mathbf{R 1})$ draw an arc.

Thronoch © draw a tanoent to this arc.

Draw a line PT cutting the circle at T_{1}

Through O draw a line OT_{2} parallel to PT_{1}.

The line $\mathbf{T}_{\mathbf{1}} \mathbf{T}_{\mathbf{2}}$ is the required tangent.

PROJECTIONS OF PLANES

A plane is a two dimensional object having length and breadth only. Its thickness is always neglected. Various shapes of plane figures are considered such as square, rectangle, circle, pentagon, hexagon, etc.

CASE OF A RECTANGLE - OBSERVE AND NOTE ALL STEPS.

SURFACE PARALLEL TO HP
PICTORIAL PRESENTATION

FV- Line // to xy

SURFACE INCLINED TO HP PICTORIAL PRESENTATION

TV- Reduced Shape

B

ONE SMALL SIDE INCLINED TO VP PICTORIAL PRESENTATION

Problem 1:

Rectangle 30 mm and 50 mm sides is resting on HP on one small side which is 30^{0} inclined to VP,while the surface of the plane makes 45^{0} inclination with HP. Draw it's projections.

Read problem and answer following questions

1. Surface inclined to which plane? ------- HP
2. Assumption for initial position? ------// to HP
3. So which view will show True shape? --- TV
4. Which side will be vertical? ---One small side. Hence begin with TV, draw rectangle below X-Y drawing one small side vertical.

Problem 2:

A $30^{\circ}-60^{\circ}$ set square of longest side 100 mm long, is in VP and 30° inclined to HP while it's surface is 45^{0} inclined to VP.Draw it's projections
(Surface \& Side inclinations directly given)

Read problem and answer following questions 1 .Surface inclined to which plane? ------- VP
2. Assumption for initial position? ------// to VP
3. So which view will show True shape? --- FV
4. Which side will be vertical? ------longest side.

Hence begin with FV, draw triangle above X-Y keeping longest side vertical.

[^0]
Problem 3:

A $30^{\circ}-60^{\circ}$ set square of longest side 100 mm long is in VP and it's surface 450 inclined to VP. One end of longest side is 10 mm and other end is 35 mm above HP. Draw it's projections
(Surface inclination directly given. Side inclination indirectly given)

Read problem and answer following questions 1 .Surface inclined to which plane? ------- VP
2. Assumption for initial position? ------// to VP
3. So which view will show True shape? --- FV
4. Which side will be vertical? ------longest side.

Hence begin with FV, draw triangle above X-Y

keeping longest side vertical.

First TWO steps are similar to previous problem. Note the manner in which side inclination is given.
 End $A 35 \mathrm{~mm}$ above Hp \& End B is 10 mm above Hp. So redraw $2^{\text {nd }} \mathrm{Fv}$ as final Fv placing these ends as said.

Problem 4:

A regular pentagon of $\mathbf{3 0 \mathrm { mm }}$ sides is resting on HP on one of it's sides with it's surface 45^{0} inclined to $\mathbf{H P}$.
Draw it's projections when the side in HP makes 30° angle with VP
SURFACE AND SIDE INCLINATIONS ARE DIRECTLY GIVEN.

Read problem and answer following questions

1. Surface inclined to which plane? ------- HP
2. Assumption for initial position? ------ // to HP
3. So which view will show True shape? --- TV
4. Which side will be vertical? ------- any side.

Hence begin with TV,draw pentagon below
X-Y line, taking one side vertical.

Problem 5:

A regular pentagon of 30 mm sides is resting on HP on one of it's sides while it's opposite vertex (corner) is 30 mm above HP.
Draw projections when side in HP is 30° inclined to VP.

Read problem and answer following questions

1. Surface inclined to which plane? ------- $\boldsymbol{H P}$
2. Assumption for initial position? ------ // to HP
3. So which view will show True shape? --- TV
4. Which side will be vertical? -------any side.

Hence begin with TV,draw pentagon below
X-Y line, taking one side vertical.

SURFACE INCLINATION INDIRECTLY GIVEN SIDE INCLINATION DIRECTLY GIVEN:

ONLY CHANGE is

the manner in which surface inclination is described:
One side on Hp \& it's opposite corner 30 mm above Hp .
Hence redraw $1^{\text {st }} \mathrm{Fv}$ as a $2^{\text {nd }}$ Fv making above arr
Keep a'b' on xy \& d' 30 mm above xy.

[^0]: Surface // to Vp Surface inclined to Vp

